20,053 research outputs found

    Dynamic Congruence vs. Progressing Bisimulation for CCS

    No full text
    Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g. \alpha.\tau.\beta.nil and \alpha.\beta.nil are woc but \tau.\beta.nil and \beta.nil are not. This fact prevent us from characterizing CCS semantics (when \tau is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e. run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two logical characterizations via modal logic in the style of HML and a complete axiomatization for finite agents (consisting of the axioms for Strong Observational Congruence and of two of the three Milner's τ\tau-laws). Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents

    The Algebraic View of Computation

    Full text link
    We argue that computation is an abstract algebraic concept, and a computer is a result of a morphism (a structure preserving map) from a finite universal semigroup.Comment: 13 pages, final version will be published elsewher

    Functorial Semantics for Petri Nets under the Individual Token Philosophy

    Get PDF
    Although the algebraic semantics of place/transition Petri nets under the collective token philosophy has been fully explained in terms of (strictly) symmetric (strict) monoidal categories, the analogous construction under the individual token philosophy is not completely satisfactory because it lacks universality and also functoriality. We introduce the notion of pre-net to recover these aspects, obtaining a fully satisfactory categorical treatment centered on the notion of adjunction. This allows us to present a purely logical description of net behaviours under the individual token philosophy in terms of theories and theory morphisms in partial membership equational logic, yielding a complete match with the theory developed by the authors for the collective token view of net

    Algebraic Models for Contextual Nets

    No full text
    We extend the algebraic approach of Meseguer and Montanari from ordinary place/transition Petri nets to contextual nets, covering both the collective and the individual token philosophy uniformly along the two interpretations of net behaviors

    Two Algebraic Process Semantics for Contextual Nets

    No full text
    We show that the so-called 'Petri nets are monoids' approach initiated by Meseguer and Montanari can be extended from ordinary place/transition Petri nets to contextual nets by considering suitable non-free monoids of places. The algebraic characterizations of net concurrent computations we provide cover both the collective and the individual token philosophy, uniformly along the two interpretations, and coincide with the classical proposals for place/transition Petri nets in the absence of read-arcs

    On the Model of Computation of Place/Transition Petri Nets

    No full text
    In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game", one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. More precisely, we introduce the new notion of decorated processes of Petri nets and we show that they induce on nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net N can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification
    corecore