22,304 research outputs found

    Neural activity classification with machine learning models trained on interspike interval series data

    Full text link
    The flow of information through the brain is reflected by the activity patterns of neural cells. Indeed, these firing patterns are widely used as input data to predictive models that relate stimuli and animal behavior to the activity of a population of neurons. However, relatively little attention was paid to single neuron spike trains as predictors of cell or network properties in the brain. In this work, we introduce an approach to neuronal spike train data mining which enables effective classification and clustering of neuron types and network activity states based on single-cell spiking patterns. This approach is centered around applying state-of-the-art time series classification/clustering methods to sequences of interspike intervals recorded from single neurons. We demonstrate good performance of these methods in tasks involving classification of neuron type (e.g. excitatory vs. inhibitory cells) and/or neural circuit activity state (e.g. awake vs. REM sleep vs. nonREM sleep states) on an open-access cortical spiking activity dataset

    Spontaneous and stimulus-induced coherent states of critically balanced neuronal networks

    Get PDF
    How the information microscopically processed by individual neurons is integrated and used in organizing the behavior of an animal is a central question in neuroscience. The coherence of neuronal dynamics over different scales has been suggested as a clue to the mechanisms underlying this integration. Balanced excitation and inhibition may amplify microscopic fluctuations to a macroscopic level, thus providing a mechanism for generating coherent multiscale dynamics. Previous theories of brain dynamics, however, were restricted to cases in which inhibition dominated excitation and suppressed fluctuations in the macroscopic population activity. In the present study, we investigate the dynamics of neuronal networks at a critical point between excitation-dominant and inhibition-dominant states. In these networks, the microscopic fluctuations are amplified by the strong excitation and inhibition to drive the macroscopic dynamics, while the macroscopic dynamics determine the statistics of the microscopic fluctuations. Developing a novel type of mean-field theory applicable to this class of interscale interactions, we show that the amplification mechanism generates spontaneous, irregular macroscopic rhythms similar to those observed in the brain. Through the same mechanism, microscopic inputs to a small number of neurons effectively entrain the dynamics of the whole network. These network dynamics undergo a probabilistic transition to a coherent state, as the magnitude of either the balanced excitation and inhibition or the external inputs is increased. Our mean-field theory successfully predicts the behavior of this model. Furthermore, we numerically demonstrate that the coherent dynamics can be used for state-dependent read-out of information from the network. These results show a novel form of neuronal information processing that connects neuronal dynamics on different scales.Comment: 20 pages 12 figures (main text) + 23 pages 6 figures (Appendix); Some of the results have been removed in the revision in order to reduce the volume. See the previous version for more result

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    A novel neural prediction error found in anterior cingulate cortex ensembles

    No full text
    The function of the anterior cingulate cortex (ACC) remains controversial, yet many theories suggest a role in behavioral adaptation, partly because a robust event-related potential, the feedback-related negativity (FN), is evoked over the ACC whenever expectations are violated. We recorded from the ACC as rats performed a task identical to one that reliably evokes an FN in humans. A subset of neurons was found that encoded expected outcomes as abstract outcome representations. The degree to which a reward/non-reward outcome representation emerged during a trial depended on the history of outcomes that preceded it. A prediction error was generated on incongruent trials as the ensembles shifted from representing the expected to the actual outcome, at the same time point we have previously reported an FN in the local field potential. The results describe a novel mode of prediction error signaling by ACC neurons that is associated with the generation of an FN
    • …
    corecore