908 research outputs found

    Population-based simulation optimization for urban mass rapid transit networks

    Get PDF
    In this paper, we present a simulation-based headway optimization for urban mass rapid transit networks. The underlying discrete event simulation model contains several stochastic elements, including time-dependent demand and turning maneuver times as well as direction-dependent vehicle travel and passenger transfer times. Passenger creation is a Poisson process that uses hourly origin–destination-matrices based on anonymous mobile phone and infrared count data. The numbers of passengers on platforms and within vehicles are subject to capacity restrictions. As a microscopic element, passenger distribution along platforms and within vehicles is considered. The bi-objective problem, involving cost reduction and service level improvement, is transformed into a single-objective optimization problem by normalization and scalarization. Population-based evolutionary algorithms and different solution encoding variants are applied. Computational experience is gained from test instances based on real-world data (i.e., the Viennese subway network). A covariance matrix adaptation evolution strategy performs best in most cases, and a newly developed encoding helps accelerate the optimization process by producing better short-term results. Document type: Articl

    Optimization models and solution methods for intermodal transportation

    Get PDF

    Optimization for Decision Making II

    Get PDF
    In the current context of the electronic governance of society, both administrations and citizens are demanding the greater participation of all the actors involved in the decision-making process relative to the governance of society. This book presents collective works published in the recent Special Issue (SI) entitled “Optimization for Decision Making II”. These works give an appropriate response to the new challenges raised, the decision-making process can be done by applying different methods and tools, as well as using different objectives. In real-life problems, the formulation of decision-making problems and the application of optimization techniques to support decisions are particularly complex and a wide range of optimization techniques and methodologies are used to minimize risks, improve quality in making decisions or, in general, to solve problems. In addition, a sensitivity or robustness analysis should be done to validate/analyze the influence of uncertainty regarding decision-making. This book brings together a collection of inter-/multi-disciplinary works applied to the optimization of decision making in a coherent manner

    An Optimisation-based Framework for Complex Business Process: Healthcare Application

    Get PDF
    The Irish healthcare system is currently facing major pressures due to rising demand, caused by population growth, ageing and high expectations of service quality. This pressure on the Irish healthcare system creates a need for support from research institutions in dealing with decision areas such as resource allocation and performance measurement. While approaches such as modelling, simulation, multi-criteria decision analysis, performance management, and optimisation can – when applied skilfully – improve healthcare performance, they represent just one part of the solution. Accordingly, to achieve significant and sustainable performance, this research aims to develop a practical, yet effective, optimisation-based framework for managing complex processes in the healthcare domain. Through an extensive review of the literature on the aforementioned solution techniques, limitations of using each technique on its own are identified in order to define a practical integrated approach toward developing the proposed framework. During the framework validation phase, real-time strategies have to be optimised to solve Emergency Department performance issues in a major hospital. Results show a potential of significant reduction in patients average length of stay (i.e. 48% of average patient throughput time) whilst reducing the over-reliance on overstretched nursing resources, that resulted in an increase of staff utilisation between 7% and 10%. Given the high uncertainty in healthcare service demand, using the integrated framework allows decision makers to find optimal staff schedules that improve emergency department performance. The proposed optimum staff schedule reduces the average waiting time of patients by 57% and also contributes to reduce number of patients left without treatment to 8% instead of 17%. The developed framework has been implemented by the hospital partner with a high level of success

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic
    • …
    corecore