34 research outputs found

    Modeling Concept Dynamics for Large Scale Music Search

    Get PDF
    10.1145/2348283.2348346SIGIR'12 - Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval455-46

    Towards an interactive framework for robot dancing applications

    Get PDF
    Estágio realizado no INESC-Porto e orientado pelo Prof. Doutor Fabien GouyonTese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Telecomunicações. Faculdade de Engenharia. Universidade do Porto. 200

    Multiscale image analysis of calcium dynamics in cardiac myocytes

    Get PDF
    Cardiac myocytes constitute a unique physiological system. They are the muscle cells that build up heart tissue and provide the force to pump blood by synchronously contracting at every beat. This contraction is regulated by calcium concentration, among other ions, which exhibits a very complex behaviour, rich in dynamical states at the molecular, cellular and tissue levels. Details of such dynamical patterns are closely related to the mechanisms responsible for cardiac function and also cardiac disease, which is the first cause of death in the modern world. The emerging field of translational cardiology focuses on the study of how such mechanisms connect and influence each other across spatial and temporal scales finally yielding to a certain clinical condition. In order to study such patterns, we benefit from the recent and very important advances in the field of experimental cell physiology. In particular, fluorescence microscopy allows us to observe the distribution of calcium in the cell with a spatial resolution below the micron and a frame rate around the millisecond, thus providing a very accurate monitoring of calcium fluxes in the cell. This thesis is the result of over five years' work on biological signal and digital image processing of cardiac cells. During this period of time the aim has been to develop computational techniques for extracting quantitative data of physiological relevance from microscopy images at different scales. The two main subjects covered in the thesis are image segmentation and classification methods applied to fluorescence microscopy imaging of cardiac myocytes. These methods are applied to a variety of problems involving different space and time scales such as the localisation of molecular receptors, the detection and characterisation of spontaneous calcium-release events and the propagation of calcium waves across a culture of cardiac cells. The experimental images and data have been provided by four internationally renowned collaborators in the field. It is thanks to them and their teams that this thesis has been possible. They are Dr. Leif Hove-Madsen from the Institut de Ciències Cardiovasculars de Catalunya in Barcelona, Prof. S. R. Wayne Chen from the Department of Physiology and Pharmacology in the Libin Cardiovascular Institute of Alberta, University of Calgary, Dr. Peter P. Jones from the Department of Physiology in the University of Otago, and Prof. Glen Tibbits from the Department of Biomedical Physiology & Kinesiology at the Simon Fraser University in Vancouver. The work belongs to the biomedical engineering discipline, focusing on the engineering perspective by applying physics and mathematics to solve biomedical problems. Specifically, we frame our contributions in the field of computational translational cardiology, attempting to connect molecular mechanisms in cardiac cells up to cardiac disease by developing signal and image-processing methods and machine-learning methods that are scalable through the different scales. This computational approach allows for a quantitative, robust and reproducible analysis of the experimental data and allows us to obtain results that otherwise would not be possible by means of traditional manual methods. The results of the thesis provide specific insight into different cell mechanisms that have a non-negligible impact at the clinical level. In particular, we gain a deeper knowledge of cell mechanisms related to cardiac arrhythmia, fibrillation phenomena, the emergence of alternans and anomalies in calcium handling due to cell ageing.Els cardiomiòcits constitueixen un sistema fisiològic únic. Són les cèl·lules muscular que formen el cor i proporcionen la força per bombar la sang fent una contracció a cada batec. La regulació d'aquesta contracció es fa mitjançant concentració de calci (entre d'altres ions) i presenta una dinàmica molt complexa tant a l'escala molecular, cel·lular i de teixit. Detalls d'aquesta dinàmica estan fortament relacionats amb la funció cardíaca i per sobre de tot amb patologies cardíaques. La disciplina emergent de la cardiologia translacional es centra en l'estudi de com aquests mecanismes es connecten i s'influencien entre sí a través de diferents escales temporals i espacials finalment donant lloc a condicions clíniques. Per estudiar aquests patrons ens beneficiem dels recents avenços en fisiologia i biologia cel·lular. En particular, la microscòpia de fluorescència ens permet observar la distribució de calci dins una cèl·lula amb una resolució espacial per sota de la micra i temporal per sota del mil·lisegon, permetent un monitoratge acurat dels fluxos de calci en la cèl·lula cardíaca. Aquesta tesi és el resultat de més de cinc anys de feina en processament de senyal i imatge de cardiomiòcits humans. Durant aquest període de temps l'objectiu principal ha estat desenvolupar tècniques computacionals per extraure dades d'imatges de microscòpia amb rellevància fisiològica. Els dos temes principals coberts a la tesi són segmentació d'imatges i classificadors, aplicats a imatges de microscòpia de fluorescència de cardiomiòcits. Els mètodes s'apliquen a diferents problemes involucrant diverses escales espacials i temporals, des de determinar la posició de receptors a l’escala molecular passant detectar i caracteritzar alliberament espontani de calci intracel·lular fins a la propagació d'ones de calci en un cultiu de cèl·lules cardíaques. Les dades experimentals han estat proporcionades per quatre col·laboradors de renom internacional. És gràcies a ells i els seus equips que aquesta tesi ha estat possible. Són el Dr. Leif Hove-Madsen de l'Institut de Ciències Cardiovasculars de Catalunya a Barcelona, el Dr. S.R. Wayne Chen del Department of Physiology and Pharmacology al Libin Cardiovascular Institute of Alberta, University of Calgary, el Dr. Peter P. Jones del Department of Physiology a la University of Otago, i el Dr. Glen Tibbits del Department of Biomedical Physiology & Kinesiology de la Simon Fraser University a Vancouver. El treball pertany a la disciplina de la enginyeria biomèdica, fent èmfasi a la perspectiva de l'enginyeria, aplicant física i matemàtiques per solucionar problemes de la biomedicina. Específicament, s'emmarca en la cardiologia translacional computacional, mirant de connectar mecanismes a l’escala molecular amb patologies cardíaques mitjançant tècniques de processament de dades i aprenentatge automàtic que són escalables a les diferents escales d’aplicació. Aquest enfocament computacional permet una anàlisi quantitatiu, robust i reproduïble de les dades experimentals i ens permet d'obtenir resultats que serien impossibles d'assolir mitjançant els tradicionals mètodes manuals. Els resultats que proporciona la tesi han permès aprofundir en l'enteniment de diferents mecanismes fisiològics amb impacte en l'àmbit clínic. Particularment hem permès d’assolir coneixements relacionats amb l'arítmia cardíaca, la fibril·lació, processos d'alternança i anomalies relacionades amb l’envelliment

    Data mining using intelligent systems : an optimized weighted fuzzy decision tree approach

    Get PDF
    Data mining can be said to have the aim to analyze the observational datasets to find relationships and to present the data in ways that are both understandable and useful. In this thesis, some existing intelligent systems techniques such as Self-Organizing Map, Fuzzy C-means and decision tree are used to analyze several datasets. The techniques are used to provide flexible information processing capability for handling real-life situations. This thesis is concerned with the design, implementation, testing and application of these techniques to those datasets. The thesis also introduces a hybrid intelligent systems technique: Optimized Weighted Fuzzy Decision Tree (OWFDT) with the aim of improving Fuzzy Decision Trees (FDT) and solving practical problems. This thesis first proposes an optimized weighted fuzzy decision tree, incorporating the introduction of Fuzzy C-Means to fuzzify the input instances but keeping the expected labels crisp. This leads to a different output layer activation function and weight connection in the neural network (NN) structure obtained by mapping the FDT to the NN. A momentum term was also introduced into the learning process to train the weight connections to avoid oscillation or divergence. A new reasoning mechanism has been also proposed to combine the constructed tree with those weights which had been optimized in the learning process. This thesis also makes a comparison between the OWFDT and two benchmark algorithms, Fuzzy ID3 and weighted FDT. SIx datasets ranging from material science to medical and civil engineering were introduced as case study applications. These datasets involve classification of composite material failure mechanism, classification of electrocorticography (ECoG)/Electroencephalogram (EEG) signals, eye bacteria prediction and wave overtopping prediction. Different intelligent systems techniques were used to cluster the patterns and predict the classes although OWFDT was used to design classifiers for all the datasets. In the material dataset, Self-Organizing Map and Fuzzy C-Means were used to cluster the acoustic event signals and classify those events to different failure mechanism, after the classification, OWFDT was introduced to design a classifier in an attempt to classify acoustic event signals. For the eye bacteria dataset, we use the bagging technique to improve the classification accuracy of Multilayer Perceptrons and Decision Trees. Bootstrap aggregating (bagging) to Decision Tree also helped to select those most important sensors (features) so that the dimension of the data could be reduced. Those features which were most important were used to grow the OWFDT and the curse of dimensionality problem could be solved using this approach. The last dataset, which is concerned with wave overtopping, was used to benchmark OWFDT with some other Intelligent Systems techniques, such as Adaptive Neuro-Fuzzy Inference System (ANFIS), Evolving Fuzzy Neural Network (EFuNN), Genetic Neural Mathematical Method (GNMM) and Fuzzy ARTMAP. Through analyzing these datasets using these Intelligent Systems Techniques, it has been shown that patterns and classes can be found or can be classified through combining those techniques together. OWFDT has also demonstrated its efficiency and effectiveness as compared with a conventional fuzzy Decision Tree and weighted fuzzy Decision Tree

    Synthesis, optimisation and control of crystallization systems

    Get PDF
    Process systems engineering has provided with a range of powerful tools to chemical engineers for synthesis, optimisation and control using thorough understanding of the processes enhanced with the aid of sophisticated and accurate multi-faceted mathematical models. Crystallization processes have rarely benefited from these new techniques, for they lack in models that could be used to bridge the gaps in their perception before utilising the resulting insight for the three above mentioned tasks. In the present work, first a consistent and sufficiently complex models for unit operations including MSMPR crystallizer, hydrocyclone and fines dissolver are developed to enhance the understanding of systems comprising these units. This insight is then utilised for devising innovative techniques to synthesise, optimise and control such processes. A constructive targeting approach is developed for innovative synthesis of stage-wise crystallization processes. The resulting solution surpasses the performance obtained from conventional design procedure not only because optimal temperature profiles are used along the crystallizers but also the distribution of feed and product removal is optimally determined through non-linear programming. The revised Machine Learning methodology presented here for continual process improvement by analysing process data and representing the findings as zone of best average performance, has directly utilised the models to generate the data in the absence of real plant data. The methodology which is demonstrated through KNO₃ crystallization process flowsheet quickly identifies three opportunities each representing an increase of 12% on nominal operation. An optimal multi-variable controller has been designed for a one litre continuous recycle crystallizer to indirectly control total number and average size of crystals from secondary process measurements. The system identification is solely based on experimental findings. Linear Quadratic Gaussian method based design procedure is developed to design the controller which not only shows excellent set-point tracking capabilities but also effectively rejects disturbance in the simulated closed loop runs
    corecore