641 research outputs found

    Efficient and Provable White-Box Primitives

    Get PDF
    International audienceIn recent years there have been several attempts to build white-box block ciphers whose implementations aim to be incompress-ible. This includes the weak white-box ASASA construction by Bouil-laguet, Biryukov and Khovratovich from Asiacrypt 2014, and the recent space-hard construction by Bogdanov and Isobe from CCS 2015. In this article we propose the first constructions aiming at the same goal while offering provable security guarantees. Moreover we propose concrete instantiations of our constructions, which prove to be quite efficient and competitive with prior work. Thus provable security comes with a surprisingly low overhead

    Fault Attack on FPGA implementations of Trivium Stream Cipher

    Get PDF
    This article presents the development of an experimental system to introduce faults in Trivium stream ciphers implemented on FPGA. The developed system has made possible to analyze the vulnerability of these implementations against fault attacks. The developed system consists of a mechanism that injects small pulses in the clock signal, and elements that analyze if a fault has been introduced, the number of faults introduced and its position in the inner state. The results obtained demonstrate the vulnerability of these implementations against fault attacks. As far as we know, this is the first time that experimental results of fault attack over Trivium are presented.Ministerio de EconomĂ­a y Competitividad TEC2010-16870Ministerio de EconomĂ­a y Competitividad TEC2013-45523- RMinisterio de EconomĂ­a y Competitividad CSIC 201550E039

    Floorplanning as a practical countermeasure against clock fault attack in Trivium stream cipher

    Get PDF
    The fault injection in ciphers operation is a very successful mechanism to attack them. The inclusion of elements of protection against this kind of attacks is more and more necessary. These mechanisms are usually based on introducing redundancy, which leads to a greater consumption of resources or a longer processing time. This article presents how the introduction of placement restrictions on ciphers can make it difficult to inject faults by altering the clock signal. It is therefore a countermeasure that neither increases the consumption of resources nor the processing time. This mechanism has been tested on FPGA implementations of the Trivium cipher. Several tests have been performed on a Spartan 3E device from Xilinx and the experimental measurements have been carried out with ChipScope Pro. The tests showed that an adequate floorplanning is a good countermeasure against these kind of attacks.Ministerio de EconomĂ­a y Competitividad TEC2013-45523-RMinisterio de EconomĂ­a y Competitividad TEC2016-80549-RMinisterio de EconomĂ­a y Competitividad CSIC 201550E03

    Shake well before use: Authentication based on Accelerometer Data

    Get PDF
    Small, mobile devices without user interfaces, such as Bluetooth headsets, often need to communicate securely over wireless networks. Active attacks can only be prevented by authenticating wireless communication, which is problematic when devices do not have any a priori information about each other. We introduce a new method for device-to-device authentication by shaking devices together. This paper describes two protocols for combining cryptographic authentication techniques with known methods of accelerometer data analysis to the effect of generating authenticated, secret keys. The protocols differ in their design, one being more conservative from a security point of view, while the other allows more dynamic interactions. Three experiments are used to optimize and validate our proposed authentication method

    Compromising emissions from a high speed cryptographic embedded system

    Get PDF
    Specific hardware implementations of cryptographic algorithms have been subject to a number of “side channel” attacks of late. A side channel is any information bearing emission that results from the physical implementation of a cryptographic algorithm. Smartcard realisations have been shown to be particularly vulnerable to these attacks. Other more complex embedded cryptographic systems may also be vulnerable, and each new design needs to be tested. The vulnerability of a recently developed high speed cryptographic accelerator is examined. The purpose of this examination is not only to verify the integrity of the device, but also to allow its designers to make a determination of its level of conformance with any standard that they may wish to comply with. A number of attacks were reviewed initially and two were chosen for examination and implementation - Power Analysis and Electromagnetic Analysis. These particular attacks appeared to offer the greatest threat to this particular system. Experimental techniques were devised to implement these attacks and a simulation and micrcontroller emulation were setup to ensure these techniques were sound. Each experimental setup was successful in attacking the simulated data and the micrcontroller circuit. The significance of this was twofold in that it verified the integrity of the setup and proved that a real threat existed. However, the attacks on the cryptographic accelerator failed in all cases to reveal any significant information. Although this is considered a positive result, it does not prove the integrity of the device as it may be possible for an adversary with more resources to successfully attack the board. It does however increase the level of confidence in this particular product and acts as a stepping stone towards conformance of cryptographic standards. The experimental procedures developed can also be used by designers wishing to test the vulnerability of their own products to these attacks

    Exploitation of Unintentional Information Leakage from Integrated Circuits

    Get PDF
    Unintentional electromagnetic emissions are used to recognize or verify the identity of a unique integrated circuit (IC) based on fabrication process-induced variations in a manner analogous to biometric human identification. The effectiveness of the technique is demonstrated through an extensive empirical study, with results presented indicating correct device identification success rates of greater than 99:5%, and average verification equal error rates (EERs) of less than 0:05% for 40 near-identical devices. The proposed approach is suitable for security applications involving commodity commercial ICs, with substantial cost and scalability advantages over existing approaches. A systematic leakage mapping methodology is also proposed to comprehensively assess the information leakage of arbitrary block cipher implementations, and to quantitatively bound an arbitrary implementation\u27s resistance to the general class of differential side channel analysis techniques. The framework is demonstrated using the well-known Hamming Weight and Hamming Distance leakage models, and approach\u27s effectiveness is demonstrated through the empirical assessment of two typical unprotected implementations of the Advanced Encryption Standard. The assessment results are empirically validated against correlation-based differential power and electromagnetic analysis attacks

    Efficient and Provable White-Box Primitives

    Get PDF
    In recent years there have been several attempts to build white-box block ciphers whose implementation aims to be incompressible. This includes the weak white-box ASASA construction by Bouillaguet, Biryukov and Khovratovich from Asiacrypt 2014, and the recent space-hard construction by Bogdanov and Isobe at CCS 2016. In this article we propose the first constructions aiming at the same goal while offering provable security guarantees. Moreover we propose concrete instantiations of our constructions, which prove to be quite efficient and competitive with prior work. Thus provable security comes with a surprisingly low overhead

    Enhanced Hardware Security Using Charge-Based Emerging Device Technology

    Get PDF
    The emergence of hardware Trojans has largely reshaped the traditional view that the hardware layer can be blindly trusted. Hardware Trojans, which are often in the form of maliciously inserted circuitry, may impact the original design by data leakage or circuit malfunction. Hardware counterfeiting and IP piracy are another two serious issues costing the US economy more than $200 billion annually. A large amount of research and experimentation has been carried out on the design of these primitives based on the currently prevailing CMOS technology. However, the security provided by these primitives comes at the cost of large overheads mostly in terms of area and power consumption. The development of emerging technologies provides hardware security researchers with opportunities to utilize some of the otherwise unusable properties of emerging technologies in security applications. In this dissertation, we will include the security consideration in the overall performance measurements to fully compare the emerging devices with CMOS technology. The first approach is to leverage two emerging devices (Silicon NanoWire and Graphene SymFET) for hardware security applications. Experimental results indicate that emerging device based solutions can provide high level circuit protection with relatively lower performance overhead compared to conventional CMOS counterpart. The second topic is to construct an energy-efficient DPA-resilient block cipher with ultra low-power Tunnel FET. Current-mode logic is adopted as a circuit-level solution to countermeasure differential power analysis attack, which is mostly used in the cryptographic system. The third investigation targets on potential security vulnerability of foundry insider\u27s attack. Split manufacturing is adopted for the protection on radio-frequency (RF) circuit design

    Systematic Characterization of Power Side Channel Attacks for Residual and Added Vulnerabilities

    Get PDF
    Power Side Channel Attacks have continued to be a major threat to cryptographic devices. Hence, it will be useful for designers of cryptographic systems to systematically identify which type of power Side Channel Attacks their designs remain vulnerable to after implementation. It’s also useful to determine which additional vulnerabilities they have exposed their devices to, after the implementation of a countermeasure or a feature. The goal of this research is to develop a characterization of power side channel attacks on different encryption algorithms\u27 implementations to create metrics and methods to evaluate their residual vulnerabilities and added vulnerabilities. This research studies the characteristics that influence the power side leakage, classifies them, and identifies both the residual vulnerabilities and the added vulnerabilities. Residual vulnerabilities are defined as the traits that leave the implementation of the algorithm still vulnerable to power Side Channel Attacks (SCA), sometimes despite the attempt at implementing countermeasures by the designers. Added vulnerabilities to power SCA are defined as vulnerabilities created or enhanced by the algorithm implementations and/or modifications. The three buckets in which we categorize the encryption algorithm implementations are: i. Countermeasures against power side channel attacks, ii. IC power delivery network impact to power leakage (including voltage regulators), iii. Lightweight ciphers and applications for the Internet of Things (IoT ) From the characterization of masking countermeasures, an example outcome developed is that masking schemes, when uniformly distributed random masks are used, are still vulnerable to collision power attacks. Another example outcome derived is that masked AES, when glitches occur, is still vulnerable to Differential Power Analysis (DPA). We have developed a characterization of power side-channel attacks on the hardware implementations of different symmetric encryption algorithms to provide a detailed analysis of the effectiveness of state-of-the-art countermeasures against local and remote power side-channel attacks. The characterization is accomplished by studying the attributes that influence power side-channel leaks, classifying them, and identifying both residual vulnerabilities and added vulnerabilities. The evaluated countermeasures include masking, hiding, and power delivery network scrambling. But, vulnerability to DPA depends largely on the quality of the leaked power, which is impacted by the characteristics of the device power delivery network. Countermeasures and deterrents to power side-channel attacks targeting the alteration or scrambling of the power delivery network have been shown to be effective against local attacks where the malicious agent has physical access to the target system. However, remote attacks that capture the leaked information from within the IC power grid are shown herein to be nonetheless effective at uncovering the secret key in the presence of these countermeasures/deterrents. Theoretical studies and experimental analysis are carried out to define and quantify the impact of integrated voltage regulators, voltage noise injection, and integration of on-package decoupling capacitors for both remote and local attacks. An outcome yielded by the studies is that the use of an integrated voltage regulator as a countermeasure is effective for a local attack. However, remote attacks are still effective and hence break the integrated voltage regulator countermeasure. From experimental analysis, it is observed that within the range of designs\u27 practical values, the adoption of on-package decoupling capacitors provides only a 1.3x increase in the minimum number of traces required to discover the secret key. However, the injection of noise in the IC power delivery network yields a 37x increase in the minimum number of traces to discover. Thus, increasing the number of on-package decoupling capacitors or the impedance between the local probing site and the IC power grid should not be relied on as countermeasures to power side-channel attacks, for remote attack schemes. Noise injection should be considered as it is more effective at scrambling the leaked signal to eliminate sensitive identifying information. However, the analysis and experiments carried out herein are applied to regular symmetric ciphers which are not suitable for protecting Internet of Things (IoT) devices. The protection of communications between IoT devices is of great concern because the information exchanged contains vital sensitive data. Malicious agents seek to exploit those data to extract secret information about the owners or the system. Power side channel attacks are of great concern on these devices because their power consumption unintentionally leaks information correlatable to the device\u27s secret data. Several studies have demonstrated the effectiveness of authenticated encryption with advanced data (AEAD), in protecting communications with these devices. In this research, we have proposed a comprehensive evaluation of the ten algorithm finalists of the National Institute of Standards and Technology (NIST) IoT lightweight cipher competition. The study shows that, nonetheless, some still present some residual vulnerabilities to power side channel attacks (SCA). For five ciphers, we propose an attack methodology as well as the leakage function needed to perform correlation power analysis (CPA). We assert that Ascon, Sparkle, and PHOTON-Beetle security vulnerability can generally be assessed with the security assumptions Chosen ciphertext attack and leakage in encryption only, with nonce-misuse resilience adversary (CCAmL1) and Chosen ciphertext attack and leakage in encryption only with nonce-respecting adversary (CCAL1) , respectively. However, the security vulnerability of GIFT-COFB, Grain, Romulus, and TinyJambu can be evaluated more straightforwardly with publicly available leakage models and solvers. They can also be assessed simply by increasing the number of traces collected to launch the attack

    Trusted SoC Realization for Remote Dynamic IP Integration

    Get PDF
    Heutzutage bieten field-programmable gate arrays (FPGAs) enorme Rechenleistung und FlexibilitĂ€t. Zudem sind sie oft auf einem einzigen Chip mit eingebetteten Multicore-Prozessoren, DSP-Engines und Speicher-Controllern integriert. Dadurch sind sie fĂŒr große und komplexe Anwendungen geeignet. Gleichzeitig fĂŒhrten die Fortschritte auf dem Gebiet der High-Level-Synthese und die VerfĂŒgbarkeit standardisierter Schnittstellen (wie etwa das Advanced eXtensible Interface 4) zur Entwicklung spezialisierter und neuartiger FunktionalitĂ€ten durch DesignhĂ€user. All dies schuf einen Bedarf fĂŒr ein Outsourcing der Entwicklung oder die Lizenzierung von FPGA-IPs (Intellectual Property). Ein Pay-per-Use IP-Lizenzierungsmodell, bei dem diese IPs vor allen Marktteilnehmern geschĂŒtzt sind, kommt den Entwicklern der IPs zugute. Außerdem handelt es sich bei den Entwicklern von FPGA-Systemen in der Regel um kleine bis mittlere Unternehmen, die in Bezug auf die MarkteinfĂŒhrungszeit und die Kosten pro Einheit von einem solchen Lizenzierungsmodell profitieren können. Im akademischen Bereich und in der Industrie gibt es mehrere IP-Lizenzierungsmodelle und Schutzlösungen, die eingesetzt werden können, die jedoch mit zahlreichen Sicherheitsproblemen behaftet sind. In einigen FĂ€llen verursachen die vorgeschlagenen Sicherheitsmaßnahmen einen unnötigen Ressourcenaufwand und EinschrĂ€nkungen fĂŒr die Systementwickler, d. h., sie können wesentliche Funktionen ihres GerĂ€ts nicht nutzen. DarĂŒber hinaus lassen sie zwei funktionale Herausforderungen außer Acht: das Floorplanning der IP auf der programmierbaren Logik (PL) und die Generierung des Endprodukts der IP (Bitstream) unabhĂ€ngig vom Gesamtdesign. In dieser Arbeit wird ein Pay-per-Use-Lizenzierungsschema vorgeschlagen und unter Verwendung eines security framework (SFW) realisiert, um all diese Herausforderungen anzugehen. Das vorgestellte Schema ist pragmatisch, weniger restriktiv fĂŒr Systementwickler und bietet Sicherheit gegen IP-Diebstahl. DarĂŒber hinaus werden Maßnahmen ergriffen, um das System vor einem IP zu schĂŒtzen, das bösartige Schaltkreise enthĂ€lt. Das „Secure Framework“ umfasst ein vertrauenswĂŒrdiges Betriebssystem, ein reichhaltiges Betriebssystem, mehrere unterstĂŒtzende Komponenten (z. B. TrustZone- Logik, gegen Seitenkanalangriffe (SCA) resistente EntschlĂŒsselungsschaltungen) und Softwarekomponenten, z. B. fĂŒr die Bitstromanalyse. Ein GerĂ€t, auf dem das SFW lĂ€uft, kann als vertrauenswĂŒrdiges GerĂ€t betrachtet werden, das direkt mit einem Repository oder einem IP-Core-Entwickler kommunizieren kann, um IPs in verschlĂŒsselter Form zu erwerben. Die EntschlĂŒsselung und Authentifizierung des IPs erfolgt auf dem GerĂ€t, was die AngriffsflĂ€che verringert und es weniger anfĂ€llig fĂŒr IP-Diebstahl macht. Außerdem werden Klartext-IPs in einem geschĂŒtzten Speicher des vertrauenswĂŒrdigen Betriebssystems abgelegt. Das Klartext-IP wird dann analysiert und nur dann auf der programmierbaren Logik konfiguriert, wenn es authentisch ist und keine bösartigen Schaltungen enthĂ€lt. Die Bitstrom-AnalysefunktionalitĂ€t und die SFW-Unterkomponenten ermöglichen die Partitionierung der PL-Ressourcen in sichere und unsichere Ressourcen, d. h. die Erweiterung desKonzepts der vertrauenswĂŒrdigen AusfĂŒhrungsumgebung (TEE) auf die PL. Dies ist die erste Arbeit, die das TEE-Konzept auf die programmierbare Logik ausweitet. Bei der oben erwĂ€hnten SCA-resistenten EntschlĂŒsselungsschaltung handelt es sich um die Implementierung des Advanced Encryption Standard, der so modifiziert wurde, dass er gegen elektromagnetische und stromverbrauchsbedingte Leckagen resistent ist. Das geschĂŒtzte Design verfĂŒgt ĂŒber zwei Gegenmaßnahmen, wobei die erste auf einer Vielzahl unterschiedler Implementierungsvarianten und verĂ€nderlichen Zielpositionen bei der Konfiguration basiert, wĂ€hrend die zweite nur unterschiedliche Implementierungsvarianten verwendet. Diese Gegenmaßnahmen sind auch wĂ€hrend der Laufzeit skalierbar. Bei der Bewertung werden auch die Auswirkungen der Skalierbarkeit auf den FlĂ€chenbedarf und die SicherheitsstĂ€rke berĂŒcksichtigt. DarĂŒber hinaus wird die zuvor erwĂ€hnte funktionale Herausforderung des IP Floorplanning durch den Vorschlag eines feinkörnigen Automatic Floorplanners angegangen, der auf gemischt-ganzzahliger linearer Programmierung basiert und aktuelle FPGAGenerationen mit grĂ¶ĂŸeren und komplexen Bausteine unterstĂŒtzt. Der Floorplanner bildet eine Reihe von IPs auf dem FPGA ab, indem er prĂ€zise rekonfigurierbare Regionen schafft. Dadurch werden die verbleibenden verfĂŒgbaren Ressourcen fĂŒr das Gesamtdesign maximiert. Die zweite funktionale Herausforderung besteht darin, dass die vorhandenen Tools keine native FunktionalitĂ€t zur Erzeugung von IPs in einer eigenstĂ€ndigen Umgebung bieten. Diese Herausforderung wird durch den Vorschlag eines unabhĂ€ngigen IP-Generierungsansatzes angegangen. Dieser Ansatz kann von den Marktteilnehmern verwendet werden, um IPs eines Entwurfs unabhĂ€ngig vom Gesamtentwurf zu generieren, ohne die KompatibilitĂ€t der IPs mit dem Gesamtentwurf zu beeintrĂ€chtigen
    • 

    corecore