3,075 research outputs found

    How to protect a wind turbine from lightning

    Get PDF
    Techniques for reducing the chances of lightning damage to wind turbines are discussed. The methods of providing a ground for a lightning strike are discussed. Then details are given on ways to protect electronic systems, generating and power equipment, blades, and mechanical components from direct and nearby lightning strikes

    Rural Facility Electric Power Quality Enhancement

    Get PDF
    Electric power disturbances are known to be more prevalent in small, isolated power systems than in larger interconnected grids which service most of the United States. This fact has given rise to a growing concern about the relative merits of different types of power conditioning equipment and their effectiveness in protecting sensitive electronics and essential loads in rural Alaska. A study has been conducted which compares isolation transformers, voltage regulators, power conditioners, uninterruptible power supplies and indoor computer surge suppressors in their ability to suppress the various disturbances which have been measured in several Alaskan communities. These include voltage sags and surges, impulses, blackouts, frequency variations and long-term voltage abnormalities. In addition, the devices were also subjected to fast, high-magnitude impulses such as might be expected in the event of a lightning strike to or near utility distribution equipment. The solutions for power line problems will vary for different load applications and for different rural electrical environments. The information presented in this report should prove to be valuable in making the analysis.List of Figures - viii List of Tables - xiv Acknowledgements - xv Chapter 1: Electric Disturbances in Power Systems Introduction - 16 Categorizing Electrical Disturbances - 17 Voltage Disturbances and Transients - 19 Frequency Disturbances - 22 Sources of Transients - 22 Lightning and EMP - 23 Switching - 24 Power System Noise - 25 Common Mode and Normal Mode Noise Signals - 26 Chapter 2: Power Quality in Rural Alaska Characterizing the Village Power System - 28 The Village Electric Load - 29 Power Quality Site Surveys - 30 Rural Power Quality in Alaska - 31 Power Conditioning Requirements for Village Loads - 37 Chapter 3: Isolation, Voltage Regulation and Power Conditioning Introduction - 39 Slow Voltage Fluctuations - 39 Voltage Regulation and Power Conditioning - 40 Ferroresonant Transformers - 40 Electronic Tap-Changing Regulators - 44 Isolation Transformers - 47 Dedicated Lines - 51 Chapter 4: Impulse Suppression Introduction - 52 Surge Suppressors - 52 Surge Suppressor Components - 55 Component Configuration - 58 EMI/RFI Filters - 58 Standard Tests for Evaluating Surge Suppressor Performance - 60 Scope of Impulse Testing for Rural Alaska - 60 Impulse Test Equipment - 62 Test Procedure - 62 Impulse Testing Measurements - 63 Test Results - 64 Chapter 5: Uninterruptible Power Supplies The True UPS - 68 Standby Power Systems and a New Generation of UPS - 69 UPS Backup Time - 74 UPS Testing - 74 Chapter 6: Computers and Power Problems Introduction - 78 The Computer Tolerance Envelope - 78 Ridethrough - 80 Component Degradation and Equipment Failure - 82 Computer Power Supplies - 82 Linear Power Supplies - 83 Switching Power Supplies - 84 PC Tolerance of Powerline Disturbances - 84 Chapter 7: Comparing Power Conditioning Alternatives Voltage Regulation - 89 Isolation - 93 Uninterruptible Power Systems - 94 Computer Surge Suppressors - 98 Summary - 98 Appendices Appendix A: Voltage Clamping Levels of Surge Suppressors - 101 Appendix B: Voltage Clamping Levels of Power Conditioners and Uninterruptible Power Systems - 115 Appendix C: Noise Suppression of Surge Suppressors and Power Conditioners - 129 Appendix D: Waveforms and Regulating Characteristics of Power Conditioners and Uninterruptible Power Systems - 135 Appendix E: Comparison of Voltage Clamping Levels of Surge Suppressors Power Conditioners, Isolation Transformers and Uninterruptible Power Systems to High-Magnitude Impulse Voltages - 151 References - 16

    An update of engine system research at the Army Propulsion Directorate

    Get PDF
    The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which have evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has demonstrated its utility in both research and development programs. The STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems

    A review of energy efficiency measures within electric motors systems

    Full text link
    © 2019 The Authors. Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer-review under responsibility of the scientific committee of ICAE2018 The 10th International Conference on Applied Energy. Electric motor systems (EMS) play the lion's share in industrial power consumption. Many opportunities for energy efficiency - most of which apparently cost-effective - can be found, but often decision-makers do not take them as the detail for a specific decision can be too high. In many cases, information regarding the characteristics of such energy efficiency measures (EEMs) is quite vague. For this reason, in the present study we offer a thorough overview of EEMs for EMS, basing on an extensive review of scientific and industrial literature, aimed at offering specific detail over single EEMs and thus support to industrial decision-makers. EEMs are presented according to four main groups, as follows: hardware, motor system drives, management of motors in the plant, and power quality. The new categorization could be helpful to support research for the development of a novel framework to represent the main factors the affect the adoption of EMS for EMS

    Space station common module network topology and hardware development

    Get PDF
    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power

    Stability of microprocessor relay protection and automation systems against intentional destructive electromagnetic impacts. Part 2

    Get PDF
    Problems of impact of the electromagnetic high-power pulses generated at nuclear explosion or by means of the special equipment, intended specially for damage of the electronic equipment, in particular digital protective relays and automatic systems, and also ways of protection from these impacts are considered.В статье рассматриваются проблемы воздействия мощных электромагнитных импульсов, генерируемых при ядерном взрыве или с помощью специального оборудования, предназначенных специально для повреждения электронной аппаратуры, в частности микропроцессорных устройств релейной защиты и автоматики, а также меры защиты от этих воздействий

    Laboratory test methodology for evaluating the effects of electromagnetic disturbances on fault-tolerant control systems

    Get PDF
    Control systems for advanced aircraft, especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met for adverse as well as nominal operating conditions. Adverse conditions can result from electromagnetic disturbances caused by lightning, high energy radio frequency transmitters, and nuclear electromagnetic pulses. Tools and techniques must be developed to verify the integrity of the control system in adverse operating conditions. The most difficult and illusive perturbations to computer based control systems caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. A methodology is presented for performing upset tests on a multichannel control system and considerations are discussed for the design of upset tests to be conducted in the lab on fault tolerant control systems operating in a closed loop with a simulated plant

    Real-time closed-loop simulation and upset evaluation of control systems in harsh electromagnetic environments

    Get PDF
    Digital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test, analog data acquisition, and digital data acquisition from fault tolerant systems. In addition, a case study of an upset test methodology for a fault tolerant electromagnetic aircraft engine control system is presented

    Active Current Surge Limiters With Inrush Current Anticipation

    Get PDF
    Active current surge limiters and methods of use are disclosed. One exemplary system, among others, comprises a current limiter, including an interface configured to be connected between a power supply and a load; a disturbance sensor, configured to monitor the power supply for a disturbance during operation of the load; and an activator, configured to receive a control signal from the disturbance sensor and to activate the current limiter based on the control signal.Georgia Tech Research Corporatio
    corecore