27,736 research outputs found

    Market and Economic Modelling of the Intelligent Grid: Interim Report 2011

    Get PDF
    The overall goal of Project 2 has been to provide a comprehensive understanding of the impacts of distributed energy (DG) on the Australian Electricity System. The research team at the UQ Energy Economics and Management Group (EEMG) has constructed a variety of sophisticated models to analyse the various impacts of significant increases in DG. These models stress that the spatial configuration of the grid really matters - this has tended to be neglected in economic discussions of the costs of DG relative to conventional, centralized power generation. The modelling also makes it clear that efficient storage systems will often be critical in solving transient stability problems on the grid as we move to the greater provision of renewable DG. We show that DG can help to defer of transmission investments in certain conditions. The existing grid structure was constructed with different priorities in mind and we show that its replacement can come at a prohibitive cost unless the capability of the local grid to accommodate DG is assessed very carefully.Distributed Generation. Energy Economics, Electricity Markets, Renewable Energy

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Modelling, Implementation, and Assessment of Virtual Synchronous Generator in Power Systems

    Get PDF

    A new method to energy saving in a micro grid

    Get PDF
    Optimization of energy production systems is a relevant issue that must be considered in order to follow the fossil fuels consumption reduction policies and CO2 emission regulation. Increasing electricity production from renewable resources (e.g., photovoltaic systems and wind farms) is desirable but its unpredictability is a cause of problems for the main grid stability. A system with multiple energy sources represents an efficient solution, by realizing an interface among renewable energy sources, energy storage systems, and conventional power generators. Direct consequences of multi-energy systems are a wider energy flexibility and benefits for the electric grid, the purpose of this paper is to propose the best technology combination for electricity generation from a mix of renewable energy resources to satisfy the electrical needs. The paper identifies the optimal off-grid option and compares this with conventional grid extension, through the use of HOMER software. The solution obtained shows that a hybrid combination of renewable energy generators at an off-grid location can be a cost-effective alternative to grid extension and it is sustainable, techno-economically viable, and environmentally sound. The results show how this innovative energetic approach can provide a cost reduction in power supply and energy fees of 40% and 25%, respectively, and CO2 emission decrease attained around 18%. Furthermore, the multi-energy system taken as the case study has been optimized through the utilization of three different type of energy storage (Pb-Ac batteries, flywheels, and micro—Compressed Air Energy Storage (C.A.E.S.)
    • …
    corecore