6,877 research outputs found

    Verification, Validation, and Solution Quality in Computational Physics: CFD Methods Applied to Ice Sheet Physics

    Get PDF
    Procedures and methods for veri.cation of coding algebra and for validations of models and calculations used in the aerospace computational fluid dynamics (CFD) community would be ef.cacious if used by the glacier dynamics modeling community. This paper presents some of those methods, and how they might be applied to uncertainty management supporting code veri.cation and model validation for glacier dynamics. The similarities and differences between their use in CFD analysis and the proposed application of these methods to glacier modeling are discussed. After establishing sources of uncertainty and methods for code veri.cation, the paper looks at a representative sampling of veri.cation and validation efforts that are underway in the glacier modeling community, and establishes a context for these within an overall solution quality assessment. Finally, a vision of a new information architecture and interactive scienti.c interface is introduced and advocated

    Performance modelling and the representation of large scale distributed system functions

    Get PDF
    This thesis presents a resource based approach to model generation for performance characterization and correctness checking of large scale telecommunications networks. A notion called the timed automaton is proposed and then developed to encapsulate behaviours of networking equipment, system control policies and non-deterministic user behaviours. The states of pooled network resources and the behaviours of resource consumers are represented as continually varying geometric patterns; these patterns form part of the data operated upon by the timed automata. Such a representation technique allows for great flexibility regarding the level of abstraction that can be chosen in the modelling of telecommunications systems. None the less, the notion of system functions is proposed to serve as a constraining framework for specifying bounded behaviours and features of telecommunications systems. Operational concepts are developed for the timed automata; these concepts are based on limit preserving relations. Relations over system states represent the evolution of system properties observable at various locations within the network under study. The declarative nature of such permutative state relations provides a direct framework for generating highly expressive models suitable for carrying out optimization experiments. The usefulness of the developed procedure is demonstrated by tackling a large scale case study, in particular the problem of congestion avoidance in networks; it is shown that there can be global coupling among local behaviours within a telecommunications network. The uncovering of such a phenomenon through a function oriented simulation is a contribution to the area of network modelling. The direct and faithful way of deriving performance metrics for loss in networks from resource utilization patterns is also a new contribution to the work area

    Thermal Plume Transport From Sand and Gravel Pits Potential Thermal Impacts on Cool-Water Streams

    Get PDF
    Potential thermal impacts from below-water-table aggregate extraction on a cool-water stream were investigated by monitoring thermal plumes, moving through an unconfined glacial-outwash aquifer, and assessing their subsurface persistence. The growing demand for aggregate and increased pressure to pursue extraction in ecologically sensitive areas has driven the need for this work. During a 10-year period, ground and surface water temperatures were measured monthly, including two periods of intensive monitoring (22 months and 2.5 years). The aquifer hydraulic conductivity (K) is quantified at the laboratory and field scale. The mean K’s from the multi-scale tests depend on test-support volume and span two-orders of magnitude, 1.8×10–4 to 1.7×10–2 m s–1. The effective thermal conductivity λ is characterized at an unprecedented level of detail by: (i) measuring the thermal conductivity of the soil solids, ls using the steady-state divided-bar apparatus and estimating conductivity from mineral composition; (ii) measuring the volumetric water content and porosity using cross-hole ground-penetrating radar; (iii) evaluating four models used to predict the apparent thermal conductivity, l, of variably saturated soils (iv) calculating the l field on a 0.25-m square cell grid using measured data and the selected model, and (v) simulating thermal transport within the two-dimensional domain using a finite-element numerical model. The apparent thermal conductivity in the saturated aquifer ranges from 2.14 to 2.69 W m-1 K-1 with a mean of 2.42 W m-1 K-1. These measurement and model methods may be used at other sites to construct thermal conductivity distributions for similar glacial soils. The annual temperature amplitude in the pit is 10ºC greater than the up gradient groundwater, resulting in alternating warm and cool plumes that persist in the aquifer for 11-months and migrate up to 250 m down gradient. The observed plume velocity (1.2 m d–1) lags the groundwater velocity (2.8 m d–1) due to thermal retardation. Using field data a conceptual model is developed, and implemented in a three-dimensional finite-element numerical model. While this work focused on plume migration, these results demonstrate that assessing impacts on the aquatic community requires an integrated, multi-disciplinary study. This work can guide such assessments

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    A Framework for Controlling Quality of Sessions in Multimedia Systems

    Get PDF
    Collaborative multimedia systems demand overall session quality control beyond the level of quality of service (QoS) pertaining to individual connections in isolation of others. At every instant in time, the quality of the session depends on the actual QoS offered by the system to each of the application streams, as well as on the relative priorities of these streams according to the application semantics. We introduce a framework for achieving QoSess control and address the architectural issues involved in designing a QoSess control laver that realizes the proposed framework. In addition, we detail our contributions for two main components of the QoSess control layer. The first component is a scalable and robust feedback protocol, which allows for determining the worst case state among a group of receivers of a stream. This mechanism is used for controlling the transmission rates of multimedia sources in both cases of layered and single-rate multicast streams. The second component is a set of inter-stream adaptation algorithms that dynamically control the bandwidth shares of the streams belonging to a session. Additionally, in order to ensure stability and responsiveness in the inter-stream adaptation process, several measures are taken, including devising a domain rate control protocol. The performance of the proposed mechanisms is analyzed and their advantages are demonstrated by simulation and experimental results
    • …
    corecore