1,472 research outputs found

    Rural Facility Electric Power Quality Enhancement

    Get PDF
    Electric power disturbances are known to be more prevalent in small, isolated power systems than in larger interconnected grids which service most of the United States. This fact has given rise to a growing concern about the relative merits of different types of power conditioning equipment and their effectiveness in protecting sensitive electronics and essential loads in rural Alaska. A study has been conducted which compares isolation transformers, voltage regulators, power conditioners, uninterruptible power supplies and indoor computer surge suppressors in their ability to suppress the various disturbances which have been measured in several Alaskan communities. These include voltage sags and surges, impulses, blackouts, frequency variations and long-term voltage abnormalities. In addition, the devices were also subjected to fast, high-magnitude impulses such as might be expected in the event of a lightning strike to or near utility distribution equipment. The solutions for power line problems will vary for different load applications and for different rural electrical environments. The information presented in this report should prove to be valuable in making the analysis.List of Figures - viii List of Tables - xiv Acknowledgements - xv Chapter 1: Electric Disturbances in Power Systems Introduction - 16 Categorizing Electrical Disturbances - 17 Voltage Disturbances and Transients - 19 Frequency Disturbances - 22 Sources of Transients - 22 Lightning and EMP - 23 Switching - 24 Power System Noise - 25 Common Mode and Normal Mode Noise Signals - 26 Chapter 2: Power Quality in Rural Alaska Characterizing the Village Power System - 28 The Village Electric Load - 29 Power Quality Site Surveys - 30 Rural Power Quality in Alaska - 31 Power Conditioning Requirements for Village Loads - 37 Chapter 3: Isolation, Voltage Regulation and Power Conditioning Introduction - 39 Slow Voltage Fluctuations - 39 Voltage Regulation and Power Conditioning - 40 Ferroresonant Transformers - 40 Electronic Tap-Changing Regulators - 44 Isolation Transformers - 47 Dedicated Lines - 51 Chapter 4: Impulse Suppression Introduction - 52 Surge Suppressors - 52 Surge Suppressor Components - 55 Component Configuration - 58 EMI/RFI Filters - 58 Standard Tests for Evaluating Surge Suppressor Performance - 60 Scope of Impulse Testing for Rural Alaska - 60 Impulse Test Equipment - 62 Test Procedure - 62 Impulse Testing Measurements - 63 Test Results - 64 Chapter 5: Uninterruptible Power Supplies The True UPS - 68 Standby Power Systems and a New Generation of UPS - 69 UPS Backup Time - 74 UPS Testing - 74 Chapter 6: Computers and Power Problems Introduction - 78 The Computer Tolerance Envelope - 78 Ridethrough - 80 Component Degradation and Equipment Failure - 82 Computer Power Supplies - 82 Linear Power Supplies - 83 Switching Power Supplies - 84 PC Tolerance of Powerline Disturbances - 84 Chapter 7: Comparing Power Conditioning Alternatives Voltage Regulation - 89 Isolation - 93 Uninterruptible Power Systems - 94 Computer Surge Suppressors - 98 Summary - 98 Appendices Appendix A: Voltage Clamping Levels of Surge Suppressors - 101 Appendix B: Voltage Clamping Levels of Power Conditioners and Uninterruptible Power Systems - 115 Appendix C: Noise Suppression of Surge Suppressors and Power Conditioners - 129 Appendix D: Waveforms and Regulating Characteristics of Power Conditioners and Uninterruptible Power Systems - 135 Appendix E: Comparison of Voltage Clamping Levels of Surge Suppressors Power Conditioners, Isolation Transformers and Uninterruptible Power Systems to High-Magnitude Impulse Voltages - 151 References - 16

    Investigation of surge propagation in transient voltage surge suppressors and experimental verification

    Get PDF
    An on-going question in the field of surge protection study is how to predict incipient failure of power electronics in the event of a short time, high voltage, and high energy transient surge propagation. The work presented in this thesis addresses the above question by investigating how a high voltage transient surge, whose duration is in the microseconds range, will propagate through the two-level transient voltage suppressor system that is intended to protect sophisticated electronics situated close to the service entrance of a building. In this work the energy patterns relevant to the individual components of the system are evaluated using numerical methods and some of the results are also compared with those obtained using SPICE simulations. Although several mathematical models for surge protection components are discussed in the literature and some device specific ones are provided by manufacturers, there is no evidence to show that a complete analysis, using any such model, has been performed to predict the energy absorptions and associated time lags between the components in a TVSS. Numerical simulation techniques using MATLAB are used to estimate the energy absorption and associated time delays in relation to the propagated transient surge, in individual components of a transient voltage surge suppressor. This study develops mathematical models for particular nonlinear transient surge absorbing elements, specifically for the metal oxide varistor and transient voltage suppressor diode, formulates the state equations which are used to numerically simulate several instances of the transient voltage surge suppressor system, and presents simulation results. All results are validated experimentally using a lightning surge simulator. The outcomes established using the two approaches indicate that the theoretical energy calculations are within 10% of the experimental validations for the metal oxide varistor, which is the main energy absorbing element in the system. The remaining energy distributions in the line-filter components and the transient voltage suppressor diode, which are at least 10 times smaller, are all within 20% of the experimental results. The times at which, the metal oxide varistor and the transient voltage suppressor diode switches to heavy conduction mode are also simulated accurately

    Design of lightning protection for a full-authority digital engine control

    Get PDF
    The steps and procedures are described which are necessary to achieve a successful lightning-protection design for a state-of-the-art Full-Authority Digital Engine Control (FADEC) system. The engine and control systems used as examples are fictional, but the design and verification methods are real. Topics discussed include: applicable airworthiness regulation, selection of equipment transient design and control levels for the engine/airframe and intra-engine segments of the system, the use of cable shields, terminal-protection devices and filter circuits in hardware protection design, and software approaches to minimize upset potential. Shield terminations, grounding, and bonding are also discussed, as are the important elements of certification and test plans, and the role of tests and analyses. Also included are examples of multiple-stroke and multiple-burst testing. A review of design pitfalls and challenges, and status of applicable test standards such as RTCA DO-160, Section 22, are presented

    An investigation into 88 KV surge arrester failures in the Eskom east grid traction network

    Get PDF
    The Eskom East Grid Traction Network (EGTN) supplying traction loads and distribution networks has experienced at least one surge arrester failure over the past ten years. These failures results in poor network reliability and customer dissatisfactions which are often overlooked. This is because reliability indices used in the reliability evaluation of transmission and distribution networks are different. It is suspected that fast transient faults in this network initiate system faults leading to surge arrester design parameter exceedances and poor network insulation coordination. Preliminary investigations in network suggest that transient studies were not done during network planning and design stages. This may have resulted in the lack of surge arrester parameter evaluations under transient conditions leading to improper surge arresters being selected and installed in this network resulting in surge arrester failures that are now evident. These failures may also have been exacerbated by the dynamic nature of traction loads as they are highly unbalanced, have poor power factors and emit high voltage distortions. Poor in-service conditions such as defects, insulation partial discharges and overheating, bolted faults in the network and quality of supply emissions can also contribute to surge arrester failures. To address problems arising with different reliability indices in these networks the reliability of the EGTN is evaluated. In this work the reliability evaluation of the EGTN is done by computing common distribution reliability indices using analytic and simulation methods. This is done by applying the analytic method in the EGTN by assessing network failure modes and effects analysis (FMEA) when the surge arrester fails in this network. The simulation method is applied by applying and modifying the MATLAB code proposed by Shavuka et al. [1]. These reliability indices are then compared with transmission reliability indices over the same period. This attempts to standardize reliability evaluations in these networks. To assess the impact of transient faults in the surge arrester parameter evaluation the EGTN is modelled and simulated by initiating transient faults sequentially in the network at different nodes and under different loading conditions. This is done by using Power System Blockset (PSB), Power System Analysis Toolbox (PSAT) and Alternate Transient Program (ATP) simulation tools and computing important surge arrester parameters i.e. continuous operating voltage, rated voltage, discharge current and energy absorption capability (EAC). These parameters are assessed by in the EGTN by evaluating computed surge arrester parameters against parameters provided by manufacturers, the Eskom 88 kV surge arrester specification and those parameters recommended in IEC 60099-4. To assess the impact and contribution of in-service conditions, faults and quality of supply emissions in surge arrester failures these contributing factors are investigated by assessing infra-red scans, fault analysis reports, results of the sampled faulted surge arrester in this network and quality of supply parameters around the time of failures. This study found that Eskom transmission and distribution network reliability indices can be standardized as distribution reliability indices i.e. SAIDI, SAIFI, CAIDI, ASAI and ASUI indices are similar to Eskom transmission indices i.e. SM, NOI, circuit availability index and circuit unavailability index respectively. Transient simulations in this study showed that certain surge arresters in the EGTN had their rated surge arrester parameters exceeded under certain transient conditions and loading conditions. These surge arresters failed as their discharge currents and EACs were exceeded under heavy and light network loading conditions. This study concluded that surge arresters whose discharge currents and EACs exceeded were improperly evaluated and selected prior to their installations in the EGTN. This study found the EAC to be the most import parameter in surge arrester performance evaluations. The Eskom 88 kV surge arrester specification was found to be inadequate, inaccurate and ambiguous as a number of inconsistencies in the usage of IEEE and IEC classified systems terminology were found. It was concluded that these inconsistencies may have led to confusions for manufacturers during surge arrester designs and selections in the EGTN. The evaluation of fault reports showed that two surge arrester failures in this network were caused by hardware failures such as conductor failure and poor network operating as the line was continuously closed onto a fault. There was no evidence that poor in-service and quality of supply emissions contributed to surge arrester failures in this network. PSB, PSAT and ATP simulation tools were found adequate in modelling and simulating the EGTN. However the PSB tool was found to be slow as the network expanded and the PSAT required user defined surge arrester models requiring detailed manufacture data sheets which are not readily available. ATP was found to be superior in terms of speed and accuracy in comparison to the PSB and PSAT tools. The MATLAB code proposed by Shavuka et al. [1] was found to be suitable and accurate in assessing transmission networks as EGTN's reliability indices computed from this code were comparable to benchmarked Eskom distribution reliability indices. The work carried out in this research will assist in improving surge arrester performance evaluations, the current surge arrester specification and surge arrester selections. Simulation tools utilized in this work show great potential in achieving this. Reliability studies conducted in this work will assist in standardizing reliability indices between Eskom's transmission and distribution divisions. In-service condition assessment carried out in this work will improve surge arrester condition monitoring and preventive maintenance practices

    Development of a Power Factor Corrected High Current Supercapacitor Charger for a Surge Resistant UPS

    Get PDF
    The Uninterrupted Power Supplies (UPSs) provide short term power back up to electrical loads when the mains power fail. Usually UPSs employ battery packs as the energy storage device. However the limitations of battery packs can affect the UPS performance. As an alternative energy storage device, the supercapacitor (SC) technology is well developed over the past 30 years. Due to recent developments, single cell commercial supercapacitors are available up to about 5000 farads. Over the past 10 years, supercapacitor direct current (DC) voltage ratings have gradually increased to about 2.7 V/cell. New lithium based supercapacitor families have DC ratings up to 3.5 V/cell. For the high current applications, the supercapacitors have some advantages over batteries, which are the low effective series resistance (ESR), high power densities and high surge withstand capability. This thesis is a continuation of the work begun by Kozhiparambil, P. K. on Surge Resistant Uninterrupted Power Supply (SRUPS). The reason for this continual research is due to identify weaknesses in original of SRUPS work with regard to the design of the charger. To reduce the components contain, also achieve common mode transient rejection capability, a flayback mode high current charger with power factor correction has been developed for charging the SC banks. The prototype circuit includes multiple SC banks to transfer the energy from the 240 V, 50 Hz power line to the load maintaining high isolation level. The loads receive continuous and surge free power from the SC banks, and has electrical isolation from the main power line. An IGBT is used as a switch for the flyback charger, which has the advantage of high current capability. The experimental results show the design was valid for the SRUPS and it demonstrated the capability to transfer the energy through a flyback charger with power factor correction

    Aging assessment of surge protective devices in nuclear power plants

    Full text link

    Design and implementation of an AC voltage regulator based on series power semiconductor array

    Get PDF
    This thesis describes the use of an array of power semiconductors (series transistor array) and a buck-boost transformer in the design and implementation of a single phase AC voltage regulator. The power semiconductor array was used to act as variable impedance across the bridge points of a rectifier. The input point of the bridge rectifier was also connected directly to the primary winding of the buck-boost transformer. A closed loop circuit was designed using an RMS/DC converter chip, with complete electrical isolation between the low voltage control circuits and the power circuits. The major advantages of this technique are: fast response to RMS voltage fluctuation; waveform fidelity; light weight; and reduced size compared to that of a servo-driven AC voltage regulator such as the PS10 Smart Power Station, which was used in this project as a benchmark for the AC voltage regulator using the power semiconductor array. The device used for testing the performances of both AC voltage regulators was the NoiseKen VDS-2002 Voltage Dip and Swell Simulator. This simulator was used to perform voltage dip, swell, interruption, and variation tests in a manner fully compliant with IEC 61000 – 4 – 11

    Power quality in high-tech campus: an exemplary case study

    Get PDF
    This paper presents preliminary results from a power quality audit conducted at a high-tech campus over last year. Voltage and current were measured at various R&D buildings. The paper examines the causes and effects of power disturbances that affect computer or any other microprocessor based equipment and analyses the auto-protection capabilities of modern power supplies. The convenience of “enhanced power supply” or “low-cost customer-side” protection solutions is also discussed. Finally it is addressed the role of the Standards on the protection of electronic equipment and the implications for the final costume

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho
    • …
    corecore