144 research outputs found

    Blood conveying ferroparticle flow on a stagnation point over a stretching sheet: Non-newtonian Williamson hybrid ferrofluid

    Get PDF
    The present research investigated the characteristics of convective boundary layer flow and heat transfer of the blood carrying ferroparticle modelled known as the non-Newtonian Williamson hybrid ferrofluid. The fluid flow and the heat transfer of a stagnation point over a stretching surface are considered. The similarity transformation approach is used to reduce the partial differential equation system to an ordinary differential equation. The transformed equations are then solved numerically by Runge-Kutta-Felberg (RKF45) method in Maple software. The flow characteristic and the heat transfer of the non-Newtonian Williamson hybrid nanofluid are tested from various pertinent fluid parameters. The temperature distribution, velocity profiles, as well as variation of the Nusselt number and the skin friction coefficient are analysed and discussed. The study reveals that the non-Newtonian Williamson Hybrid ferrofluid potentially provided better performance in heat transfer capability compared to ferrofluid with the same volume of nanoparticle volume fraction

    Entropy analysis on convective film flow of power-law fluid with nanoparticles along an inclined plate

    Get PDF
    Entropy generation in a two-dimensional steady laminar thin film convection flow of a non-Newtonian nanofluid (Ostwald-de-Waele-type power-law fluid with embedded nanoparticles) along an inclined plate is examined theoretically. A revised Buongiorno model is adopted for nanoscale effects, which includes the effects of the Brownian motion and thermophoresis. The nanofluid particle fraction on the boundary is passively rather than actively controlled. A convective boundary condition is employed. The local nonsimilarity method is used to solve the dimensionless nonlinear system of governing equations. Validation with earlier published results is included. A decrease in entropy generation is induced due to fluid friction associated with an increasing value of the rheological power-law index. The Brownian motion of nanoparticles enhances thermal convection via the enhanced transport of heat in microconvection surrounding individual nanoparticles. A higher convective parameter implies more intense convective heating of the plate, which increases the temperature gradient. An increase in the thermophoresis parameter decreases the nanoparticle volume fraction near the wall and increases it further from the wall. Entropy generation is also reduced with enhancement of the thermophoresis effect throughout the boundary layer

    Computational analysis of non-Newtonian boundary layer flow of Nanofluid past a vertical plate with partial slip

    Get PDF
    In the present study, the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid over a vertical plate surface with multiple slip effect is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer convective conditions. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type. The influences of the emerging parameters i.e. Casson fluid parameter (β), Brownian motion parameter (Nb), thermophoresis parameter (Nt), Buoyancy ratio parameter (N ), Lewis number (Le), Prandtl number (Pr), Velocity slip factor (Sf) and Thermal slip factor (ST) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length. Validation of solutions with a Nakamura tridiagonal method has been included. The study is relevant to enrobing processes for electric-conductive nano-materials, of potential use in aerospace and other industries

    Ramification of hall and mixed convective radiative flow towards a stagnation point into the motion of water conveying alumina nanoparticles past a flat vertical plate with a convective boundary condition: the case of non-newtonian williamson fluid

    Get PDF
    Heat transfer technologies are experiencing rapid expansion as a result of the demand for efficient heating and cooling systems in the automotive, chemical, and aerospace industries. Therefore, the current study peruses an inspection of mixed convective radiative Williamson flow close to a stagnation point aggravated by a single nanoparticle (alumina) from a vertical flat plate with the impact of Hall. The convective heating of water conveying alumina (Al2O3) nanoparticles, as appropriate in engineering or industry, is investigated. Using pertinent similarity variables, the dominating equations are non-dimensionalized, and after that, via the bvp4c solver, they are numerically solved. We extensively explore the effects of many relevant parameters on axial velocity, transverse velocity, temperature profile, heat transfer, and drag force. In the opposing flow, there are two solutions seen; in the aiding flow, just one solution is found. In addition, the results designate that, due to nanofluid, the thickness of the velocity boundary layer decreases, and the thermal boundary layer width upsurges. The gradients for the branch of stable outcome escalate due to a higher Weissenberg parameter, while they decline for the branch of lower outcomes. Moreover, a magnetic field can be used to influence the flow and the properties of heat transfer

    Simulation of second-order velocity slip of magnetohydrodynamic (MHD) flows

    Get PDF
    Abstract: The influence of second-order velocity slip of magnetohydrodynamic flow involved in liquid-metal was numerically investigated. A commercial Computational Fluid Dynamics (CFD) code, STAR-CCM+ 13 was used. The MHD flow of Galinstan (GaInSn - Gallium-Indium-Tin) an electrically conducting liquid-metal fluid in the presence of a magnetic field was investigated. The variations of velocity within the second-order velocity slip parameters were found to be influenced by the local variations of the magnetic field. It was determined that the second-order velocity slip persists due to an increase in the thermal boundary layer. The numerical results were compared to published literature and were in good agreement

    Numerical Simulation of Convective-Radiative Heat Transfer

    Get PDF
    This book presents numerical, experimental, and analytical analysis of convective and radiative heat transfer in various engineering and natural systems, including transport phenomena in heat exchangers and furnaces, cooling of electronic heat-generating elements, and thin-film flows in various technical systems. It is well known that such heat transfer mechanisms are dominant in the systems under consideration. Therefore, in-depth study of these regimes is vital for both the growth of industry and the preservation of natural resources. The authors included in this book present insightful and provocative studies on convective and radiative heat transfer using modern analytical techniques. This book will be very useful for academics, engineers, and advanced students
    • …
    corecore