1,530 research outputs found

    Phase response function for oscillators with strong forcing or coupling

    Full text link
    Phase response curve (PRC) is an extremely useful tool for studying the response of oscillatory systems, e.g. neurons, to sparse or weak stimulation. Here we develop a framework for studying the response to a series of pulses which are frequent or/and strong so that the standard PRC fails. We show that in this case, the phase shift caused by each pulse depends on the history of several previous pulses. We call the corresponding function which measures this shift the phase response function (PRF). As a result of the introduction of the PRF, a variety of oscillatory systems with pulse interaction, such as neural systems, can be reduced to phase systems. The main assumption of the classical PRC model, i.e. that the effect of the stimulus vanishes before the next one arrives, is no longer a restriction in our approach. However, as a result of the phase reduction, the system acquires memory, which is not just a technical nuisance but an intrinsic property relevant to strong stimulation. We illustrate the PRF approach by its application to various systems, such as Morris-Lecar, Hodgkin-Huxley neuron models, and others. We show that the PRF allows predicting the dynamics of forced and coupled oscillators even when the PRC fails

    Noise-induced synchronization and anti-resonance in excitable systems; Implications for information processing in Parkinson's Disease and Deep Brain Stimulation

    Full text link
    We study the statistical physics of a surprising phenomenon arising in large networks of excitable elements in response to noise: while at low noise, solutions remain in the vicinity of the resting state and large-noise solutions show asynchronous activity, the network displays orderly, perfectly synchronized periodic responses at intermediate level of noise. We show that this phenomenon is fundamentally stochastic and collective in nature. Indeed, for noise and coupling within specific ranges, an asymmetry in the transition rates between a resting and an excited regime progressively builds up, leading to an increase in the fraction of excited neurons eventually triggering a chain reaction associated with a macroscopic synchronized excursion and a collective return to rest where this process starts afresh, thus yielding the observed periodic synchronized oscillations. We further uncover a novel anti-resonance phenomenon: noise-induced synchronized oscillations disappear when the system is driven by periodic stimulation with frequency within a specific range. In that anti-resonance regime, the system is optimal for measures of information capacity. This observation provides a new hypothesis accounting for the efficiency of Deep Brain Stimulation therapies in Parkinson's disease, a neurodegenerative disease characterized by an increased synchronization of brain motor circuits. We further discuss the universality of these phenomena in the class of stochastic networks of excitable elements with confining coupling, and illustrate this universality by analyzing various classical models of neuronal networks. Altogether, these results uncover some universal mechanisms supporting a regularizing impact of noise in excitable systems, reveal a novel anti-resonance phenomenon in these systems, and propose a new hypothesis for the efficiency of high-frequency stimulation in Parkinson's disease

    Bifurcations and synchronization using an integrated programmable chaotic circuit

    Get PDF
    This paper presents a CMOS chip which can act as an autonomous stand-alone unit to generate different real-time chaotic behaviors by changing a few external bias currents. In particular, by changing one of these bias currents, the chip provides different examples of a period-doubling route to chaos. We present experimental orbits and attractors, time waveforms and power spectra measured from the chip. By using two chip units, experiments on synchronization can be carried out as well in real-time. Measurements are presented for the following synchronization schemes: linear coupling, drive-response and inverse system. Experimental statistical characterizations associated to these schemes are also presented. We also outline the possible use of the chip for chaotic encryption of audio signals. Finally, for completeness, the paper includes also a brief description of the chip design procedure and its internal circuitry

    Kick control: using the attracting states arising within the sensorimotor loop of self-organized robots as motor primitives

    Full text link
    Self-organized robots may develop attracting states within the sensorimotor loop, that is within the phase space of neural activity, body, and environmental variables. Fixpoints, limit cycles, and chaotic attractors correspond in this setting to a non-moving robot, to directed, and to irregular locomotion respectively. Short higher-order control commands may hence be used to kick the system from one self-organized attractor robustly into the basin of attraction of a different attractor, a concept termed here as kick control. The individual sensorimotor states serve in this context as highly compliant motor primitives. We study different implementations of kick control for the case of simulated and real-world wheeled robots, for which the dynamics of the distinct wheels is generated independently by local feedback loops. The feedback loops are mediated by rate-encoding neurons disposing exclusively of propriosensoric inputs in terms of projections of the actual rotational angle of the wheel. The changes of the neural activity are then transmitted into a rotational motion by a simulated transmission rod akin to the transmission rods used for steam locomotives. We find that the self-organized attractor landscape may be morphed both by higher-level control signals, in the spirit of kick control, and by interacting with the environment. Bumping against a wall destroys the limit cycle corresponding to forward motion, with the consequence that the dynamical variables are then attracted in phase space by the limit cycle corresponding to backward moving. The robot, which does not dispose of any distance or contact sensors, hence reverses direction autonomously.Comment: 17 pages, 9 figure

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    Electrical Compartmentalization in Neurons

    Get PDF
    The dendritic tree of neurons plays an important role in information processing in the brain. While it is thought that dendrites require independent subunits to perform most of their computations, it is still not understood how they compartmentalize into functional subunits. Here, we show how these subunits can be deduced from the properties of dendrites. We devised a formalism that links the dendritic arborization to an impedance-based tree graph and show how the topology of this graph reveals independent subunits. This analysis reveals that cooperativity between synapses decreases slowly with increasing electrical separation and thus that few independent subunits coexist. We nevertheless find that balanced inputs or shunting inhibition can modify this topology and increase the number and size of the subunits in a context-dependent manner. We also find that this dynamic recompartmentalization can enable branch-specific learning of stimulus features. Analysis of dendritic patch-clamp recording experiments confirmed our theoretical predictions.Peer reviewe

    Multi-Scale Mathematical Modelling of Brain Networks in Alzheimer's Disease

    Get PDF
    Perturbations to brain network dynamics on a range of spatial and temporal scales are believed to underpin neurological disorders such as Alzheimer’s disease (AD). This thesis combines quantitative data analysis with tools such as dynamical systems and graph theory to understand how the network dynamics of the brain are altered in AD and experimental models of related pathologies. Firstly, we use a biophysical neuron model to elucidate ionic mechanisms underpinning alterations to the dynamics of principal neurons in the brain’s spatial navigation systems in an animal model of tauopathy. To uncover how synaptic deficits result in alterations to brain dynamics, we subsequently study an animal model featuring local and long-range synaptic degeneration. Synchronous activity (functional connectivity; FC) between neurons within a region of the cortex is analysed using two-photon calcium imaging data. Long-range FC between regions of the brain is analysed using EEG data. Furthermore, a computational model is used to study relationships between networks on these different spatial scales. The latter half of this thesis studies EEG to characterize alterations to macro-scale brain dynamics in clinical AD. Spectral and FC measures are correlated with cognitive test scores to study the hypothesis that impaired integration of the brain’s processing systems underpin cognitive impairment in AD. Whole brain computational modelling is used to gain insight into the role of spectral slowing on FC, and elucidate potential synaptic mechanisms of FC differences in AD. On a finer temporal scale, microstate analyses are used to identify changes to the rapid transitioning behaviour of the brain’s resting state in AD. Finally, the electrophysiological signatures of AD identified throughout the thesis are combined into a predictive model which can accurately separate people with AD and healthy controls based on their EEG, results which are validated on an independent patient cohort. Furthermore, we demonstrate in a small preliminary cohort that this model is a promising tool for predicting future conversion to AD in patients with mild cognitive impairment

    Bifurcation analysis applied to a model of motion integration with a multistable stimulus

    Get PDF
    A computational study into the motion perception dynamics of a multistable psychophysics stimulus is presented. A diagonally drifting grating viewed through a square aperture is can be perceived as moving in the actual grating direction or in line with the aperture edges (horizontally or vertically). The different percepts are the product of interplay between ambiguous contour cues and specific terminator cues. We present a dynamical model of motion integration that performs direction selection for such a stimulus and link the different percepts to coexisting steady-states of the underlying equations. We apply the powerful tools of bifurcation analysis and numerical continuation to study the changes to the model's solution structure under the variation of parameters. Indeed, we apply these tools in a systematic way, taking into account biological and mathematical constraints, in order to fix model parameters. A region of parameter space is identified for which the model reproduces the qualitative behaviour observed in experiments. The temporal dynamics of motion integration are studied within this region; specifically, the effect of varying the stimulus gain is studied, which allows for qualitative predictions to be made
    • 

    corecore