5,039 research outputs found

    Data driven techniques for on-board performance estimation and prediction in vehicular applications.

    Get PDF
    L'abstract eĢ€ presente nell'allegato / the abstract is in the attachmen

    Drift Correction Methods for gas Chemical Sensors in Artificial Olfaction Systems: Techniques and Challenges

    Get PDF
    In this chapter the authors introduce the main challenges faced when developing drift correction techniques and will propose a deep overview of state-of-the-art methodologies that have been proposed in the scientific literature trying to underlying pros and cons of these techniques and focusing on challenges still open and waiting for solution

    Design Issues and Challenges of File Systems for Flash Memories

    Get PDF
    This chapter discusses how to properly address the issues of using NAND flash memories as mass-memory devices from the native file system standpoint. We hope that the ideas and the solutions proposed in this chapter will be a valuable starting point for designers of NAND flash-based mass-memory devices

    Health Condition Assessment of Multi-Chip IGBT Module with Magnetic Flux Density

    Get PDF
    To achieve efficient conversion and flexible control of electronic energy, insulated gate bipolar transistor (IGBT) power modules as the dominant power semiconductor devices are increasingly applied in many areas such as electric drives, hybrid electric vehicles, railways, and renewable energy systems. It is known that IGBTs are the most vulnerable components in power converter systems. To achieve high power density and high current capability, several IGBT chips are connected in parallel as a multi-chip IGBT module, which makes the power modules less reliable due to a more complex structure. The lowered reliability of IGBT modules will not only cause safety problems but also increase operation costs due to the failure of IGBT modules. Therefore, the reliability of IGBTs is important for the overall system, especially in high power applications. To improve the reliability of IGBT modules, this thesis proposes a new health state assessment model with a more sensitive precursor parameter for multi-chip IGBT module that allows for condition-based maintenance and replacement prior to complete failure. Accurate health condition monitoring depends on the knowledge of failure mechanism and the selection of highly sensitive failure precursor. IGBT modules normally wear out and fail due to thermal cycling and operating environment. To enhance the understanding of the failure mechanism and the external characteristic performance of multi-chip IGBT modules, an electro-thermal finite element model (FEM) of a multi-chip IGBT module used in wind turbine converter systems was established with considerations for temperature dependence of material property, the thermal coupling effect between components, and the heat transfer process. The electro-thermal FEM accurately performed temperature distribution and the distribution electrical characteristic parameters during chip solder degradation. This study found an increased junction temperature, large change of temperature distribution, and more serious imbalanced current sharing during a single chip solder aging, thereby accelerating the aging of the whole IGBT module. According to the change of thermal and electrical parameters with chip solder fatigue, the sensitivity of fatigue sensitive parameters (FSPs) was analyzed. The collector current of the aging chip showed the highest sensitivity with the chip solder degradation compared with the junction temperature, case temperature, and collector-emitter voltage. However, the current distribution of internal components remains inaccessible through direct measurements or visual inspection due to the package. As the relationship between the current and magnetic field has been studied and gradually applied in sensor technologies, magnetic flux density was proposed instead of collector current as a new precursor for health condition monitoring. Magnetic flux density distribution was extracted by an electro-thermal-magnetic FEM of the multi-chip IGBT module based on electromagnetic theory. Simulation results showed that magnetic flux density had even higher sensitivity than collector current with chip solder degradation. In addition, the magnetic flux density was only related with the current and was not influenced by temperature, which suggested good selectivity. Therefore, the magnetic flux density was selected as the precursor due to its better sensitivity, selectivity, and generality. Finally, a health state assessment model based on backpropagation neural network (BPNN) was established according to the selected precursor. To localize and evaluate chip solder degradation, the health state of the IGBT module was determined by the magnetic flux density for each chip and the corresponding operating conduction current. BPNN featured good self-learning, self-adapting, robustness and generalization ability to deal with the nonlinear relationship between the four inputs and health state. Experimental results showed that the proposed model was accurate and effective. The health status of the IGBT modules was effectively recognized with an overall recognition rate of 99.8%. Therefore, the health state assessment model built in this thesis can accurately evaluate current health state of the IGBT module and support condition-based maintenance of the IGBT module

    An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers:A Novel Approach for Smart Grid-Ready Energy Management Systems

    Get PDF
    After the massive integration of distributed energy resources, energy storage systems and the charging stations of electric vehicles, it has become very difficult to implement an efficient grid energy management system regarding the unmanageable behavior of the power flow within the grid, which can cause many critical problems in different grid stages, typically in the substations, such as failures, blackouts, and power transformer explosions. However, the current digital transition toward Energy 4.0 in Smart Grids allows the integration of smart solutions to substations by integrating smart sensors and implementing new control and monitoring techniques. This paper is proposing a hybrid artificial intelligence multilayer for power transformers, integrating different diagnostic algorithms, Health Index, and life-loss estimation approaches. After gathering different datasets, this paper presents an exhaustive algorithm comparative study to select the best fit models. This developed architecture for prognostic (PHM) health management is a hybrid interaction between evolutionary support vector machine, random forest, k-nearest neighbor, and linear regression-based models connected to an online monitoring system of the power transformer; these interactions are calculating the important key performance indicators which are related to alarms and a smart energy management system that gives decisions on the load management, the power factor control, and the maintenance schedule planning

    Neural Networks for Modeling and Control of Particle Accelerators

    Full text link
    We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller.Comment: 21 p

    Multi-Level Data-Driven Battery Management: From Internal Sensing to Big Data Utilization

    Get PDF
    Battery management system (BMS) is essential for the safety and longevity of lithium-ion battery (LIB) utilization. With the rapid development of new sensing techniques, artificial intelligence and the availability of huge amounts of battery operational data, data-driven battery management has attracted ever-widening attention as a promising solution. This review article overviews the recent progress and future trend of data-driven battery management from a multi-level perspective. The widely-explored data-driven methods relying on routine measurements of current, voltage, and surface temperature are reviewed first. Within a deeper understanding and at the microscopic level, emerging management strategies with multi-dimensional battery data assisted by new sensing techniques have been reviewed. Enabled by the fast growth of big data technologies and platforms, the efficient use of battery big data for enhanced battery management is further overviewed. This belongs to the upper and the macroscopic level of the data-driven BMS framework. With this endeavor, we aim to motivate new insights into the future development of next-generation data-driven battery management
    • ā€¦
    corecore