67,484 research outputs found

    Effects of Diversity on Multi-agent Systems: Minority Games

    Full text link
    We consider a version of large population games whose agents compete for resources using strategies with adaptable preferences. The games can be used to model economic markets, ecosystems or distributed control. Diversity of initial preferences of strategies is introduced by randomly assigning biases to the strategies of different agents. We find that diversity among the agents reduces their maladaptive behavior. We find interesting scaling relations with diversity for the variance and other parameters such as the convergence time, the fraction of fickle agents, and the variance of wealth, illustrating their dynamical origin. When diversity increases, the scaling dynamics is modified by kinetic sampling and waiting effects. Analyses yield excellent agreement with simulations.Comment: 41 pages, 16 figures; minor improvements in content, added references; to be published in Physical Review

    Parrondo Strategies for Artificial Traders

    Full text link
    On markets with receding prices, artificial noise traders may consider alternatives to buy-and-hold. By simulating variations of the Parrondo strategy, using real data from the Swedish stock market, we produce first indications of a buy-low-sell-random Parrondo variation outperforming buy-and-hold. Subject to our assumptions, buy-low-sell-random also outperforms the traditional value and trend investor strategies. We measure the success of the Parrondo variations not only through their performance compared to other kinds of strategies, but also relative to varying levels of perfect information, received through messages within a multi-agent system of artificial traders.Comment: 10 pages, 4 figure

    Diversity and Adaptation in Large Population Games

    Full text link
    We consider a version of large population games whose players compete for resources using strategies with adaptable preferences. The system efficiency is measured by the variance of the decisions. In the regime where the system can be plagued by the maladaptive behavior of the players, we find that diversity among the players improves the system efficiency, though it slows the convergence to the steady state. Diversity causes a mild spread of resources at the transient state, but reduces the uneven distribution of resources in the steady state.Comment: 8 pages, 3 figure

    Embedding agents in business applications using enterprise integration patterns

    Get PDF
    This paper addresses the issue of integrating agents with a variety of external resources and services, as found in enterprise computing environments. We propose an approach for interfacing agents and existing message routing and mediation engines based on the endpoint concept from the enterprise integration patterns of Hohpe and Woolf. A design for agent endpoints is presented, and an architecture for connecting the Jason agent platform to the Apache Camel enterprise integration framework using this type of endpoint is described. The approach is illustrated by means of a business process use case, and a number of Camel routes are presented. These demonstrate the benefits of interfacing agents to external services via a specialised message routing tool that supports enterprise integration patterns

    Co-evolutionnary network approach to cultural dynamics controlled by intolerance

    Full text link
    Starting from Axelrod's model of cultural dissemination, we introduce a rewiring probability, enabling agents to cut the links with their unfriendly neighbors if their cultural similarity is below a tolerance parameter. For low values of tolerance, rewiring promotes the convergence to a frozen monocultural state. However, intermediate tolerance values prevent rewiring once the network is fragmented, resulting in a multicultural society even for values of initial cultural diversity in which the original Axelrod model reaches globalization

    Emergence of Hierarchy on a Network of Complementary Agents

    Full text link
    Complementarity is one of the main features underlying the interactions in biological and biochemical systems. Inspired by those systems we propose a model for the dynamical evolution of a system composed by agents that interact due to their complementary attributes rather than their similarities. Each agent is represented by a bit-string and has an activity associated to it; the coupling among complementary peers depends on their activity. The connectivity of the system changes in time respecting the constraint of complementarity. We observe the formation of a network of active agents whose stability depends on the rate at which activity diffuses in the system. The model exhibits a non-equilibrium phase transition between the ordered phase, where a stable network is generated, and a disordered phase characterized by the absence of correlation among the agents. The ordered phase exhibits multi-modal distributions of connectivity and activity, indicating a hierarchy of interaction among different populations characterized by different degrees of activity. This model may be used to study the hierarchy observed in social organizations as well as in business and other networks.Comment: 13 pages, 4 figures, submitte
    corecore