1,267 research outputs found

    On the Energy Efficiency of LT Codes in Proactive Wireless Sensor Networks

    Full text link
    This paper presents an in-depth analysis on the energy efficiency of Luby Transform (LT) codes with Frequency Shift Keying (FSK) modulation in a Wireless Sensor Network (WSN) over Rayleigh fading channels with pathloss. We describe a proactive system model according to a flexible duty-cycling mechanism utilized in practical sensor apparatus. The present analysis is based on realistic parameters including the effect of channel bandwidth used in the IEEE 802.15.4 standard, active mode duration and computation energy. A comprehensive analysis, supported by some simulation studies on the probability mass function of the LT code rate and coding gain, shows that among uncoded FSK and various classical channel coding schemes, the optimized LT coded FSK is the most energy-efficient scheme for distance d greater than the pre-determined threshold level d_T , where the optimization is performed over coding and modulation parameters. In addition, although the optimized uncoded FSK outperforms coded schemes for d < d_T , the energy gap between LT coded and uncoded FSK is negligible for d < d_T compared to the other coded schemes. These results come from the flexibility of the LT code to adjust its rate to suit instantaneous channel conditions, and suggest that LT codes are beneficial in practical low-power WSNs with dynamic position sensor nodes.Comment: accepted for publication in IEEE Transactions on Signal Processin

    Not All Wireless Sensor Networks Are Created Equal: A Comparative Study On Tunnels

    Get PDF
    Wireless sensor networks (WSNs) are envisioned for a number of application scenarios. Nevertheless, the few in-the-field experiences typically focus on the features of a specific system, and rarely report about the characteristics of the target environment, especially w.r.t. the behavior and performance of low-power wireless communication. The TRITon project, funded by our local administration, aims to improve safety and reduce maintenance costs of road tunnels, using a WSN-based control infrastructure. The access to real tunnels within TRITon gives us the opportunity to experimentally assess the peculiarities of this environment, hitherto not investigated in the WSN field. We report about three deployments: i) an operational road tunnel, enabling us to assess the impact of vehicular traffic; ii) a non-operational tunnel, providing insights into analogous scenarios (e.g., underground mines) without vehicles; iii) a vineyard, serving as a baseline representative of the existing literature. Our setup, replicated in each deployment, uses mainstream WSN hardware, and popular MAC and routing protocols. We analyze and compare the deployments w.r.t. reliability, stability, and asymmetry of links, the accuracy of link quality estimators, and the impact of these aspects on MAC and routing layers. Our analysis shows that a number of criteria commonly used in the design of WSN protocols do not hold in tunnels. Therefore, our results are useful for designing networking solutions operating efficiently in similar environments

    Alternate marking-based network telemetry for industrial WSNs

    Get PDF
    For continuous, persistent and problem-free operation of Industrial Wireless Sensor Networks (IWSN), it is critical to have visibility and awareness into what is happening on the network at any one time. Especially, for the use cases with strong needs for deterministic and real-time network services with latency and reliability guarantees, it is vital to monitor network devices continuously to guarantee their functioning, detect and isolate relevant problems and verify if all system requirements are being met simultaneously. In this context, this article investigates a light-weight telemetry solution for IWSNs, which enables the collection of accurate and continuous flowbased telemetry information, while adding no overhead on the monitored packets. The proposed monitoring solution adopts the recent Alternate Marking Performance Monitoring (AMPM) concept and mainly targets measuring end-to-end and hopby-hop reliability and delay performance in critical application flows. Besides, the technical capabilities and characteristics of the proposed solution are evaluated via a real-life implementation and practical experiments, validating its suitability for IWSNs

    Delay and energy consumption analysis of frame slotted ALOHA variants for massive data collection in internet-of-things scenarios

    Get PDF
    This paper models and evaluates three FSA-based (Frame Slotted ALOHA) MAC (Medium Access Control) protocols, namely, FSA-ACK (FSA with ACKnowledgements), FSA-FBP (FSA with FeedBack Packets) and DFSA (Dynamic FSA). The protocols are modeled using an AMC (Absorbing Markov Chain), which allows to derive analytic expressions for the average packet delay, as well as the energy consumption of both the network coordinator and the end-devices. The results, based on computer simulations, show that the analytic model is accurate and outline the benefits of DFSA. In terms of delay, DFSA provides a reduction of 17% (FSA-FBP) and 32% (FSA-ACK), whereas in terms of energy consumption DFSA provides savings of 23% (FSA-FBP) and 28% (FSA-ACK) for the coordinator and savings of 50% (FSA-FBP) and 24% (FSA-ACK) for end-devices. Finally, the paper provides insights on how to configure each FSA variant depending on the network parameters, i.e., depending on the number of end-devices, to minimize delay and energy expenditure. This is specially interesting for massive data collection in IoT (Internet-of-Things) scenarios, which typically rely on FSA-based protocols and where the operation has to be optimized to support a large number of devices with stringent energy consumption requirementsPeer ReviewedPostprint (published version
    • …
    corecore