22,641 research outputs found

    Tissue transglutaminase in normal and abnormal wound healing: review article

    Get PDF
    A complex series of events involving inflammation, cell migration and proliferation, ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the tissue response to injury. Wound healing involves the dynamic interactions of multiple cells types with components of the extracellular matrix (ECM) and growth factors. Impaired wound healing as a consequence of aging, injury or disease may lead to serious disabilities and poor quality of life. Abnormal wound healing may also lead to inflammatory and fibrotic conditions (such as renal and pulmonary fibrosis). Therefore identification of the molecular events underlying wound repair is essential to develop new effective treatments in support to patients and the wound care sector. Recent advances in the understating of the physiological functions of tissue transglutaminase a multi functional protein cross-linking enzyme which stabilises tissues have demonstrated that its biological activities interrelate with wound healing phases at multiple levels. This review describes our view of the function of tissue trasnglutaminase in wound repair under normal and pathological situations and highlights its potential as a strategic therapeutic target in the development of new treatments to improve wound healing and prevent scarring

    Expression of functional recombinant human tissue transglutaminase (TG2) using the bac-to-bac baculovirus expression system

    Get PDF
    Purpose: Tissue transglutaminase (TG2) is a unique multifunctional enzyme. The enzyme possesses enzymatic activities such as transamidation/crosslinking and non-enzymatic functions such as cell migration and signal transduction. TG2 has been shown to be involved in molecular mechanisms of cancers and several neurodegenerative diseases such as Alzheimer's disease. The present study aimed at cloning and expression of full length human TG2 in Bac-to-Bac baculovirus expression system and evaluation of its activity. Methods: pFastBac HTA donor vector containing coding sequence of human TG2 was constructed. The construct was transformed to DH10Bac for generating recombinant bacmid. The verified bacmid was transfected to insect cell line (Sf9). Expression of recombinant TG2 was examined by RT-PCR, SDS-PAGE and western blot analysis. Functional analysis was evaluated by fluorometric assay and gel electrophoresis. Results: Recombinant bacmid was verified by amplification of a band near to 4500 bp. Expression analysis showed that the enzyme was expressed as a protein with a molecular weight near 80 kDa. Western blot confirmed the presence of TG2 and the activity assays including flurometric assay indicated that the recombinant TG2 was functional. The electrophoresis assay conformed that the expressed TG2 was the indeed capable of crosslinking in the presence of physiological concentration calcium ions. Conclusion: Human TG2 was expressed efficiently in the active biological form in the Bacto- Bac baculovirus expression system. The expressed enzyme could be used for medical diagnostic, or studies which aim at finding novel inhibitors of the enzymes . To best of our knowledge, this is probably the first report of expression of full length human tissue transglutaminase (TG2) using the Bac-to-Bac expression system. © 2016 The Authors

    The transglutaminase type 2 and pyruvate kinase isoenzyme M2 interplay in autophagy regulation

    Get PDF
    Autophagy is a self-degradative physiological process by which the cell removes worn-out or damaged components. Constant at basal level it may become highly active in response to cellular stress. The type 2 transglutaminase (TG2), which accumulates under stressful cell conditions, plays an important role in the regulation of autophagy and cells lacking this enzyme display impaired autophagy/mitophagy and a consequent shift their metabolism to glycolysis. To further define the molecular partners of TG2 involved in these cellular processes, we analysed the TG2 interactome under normal and starved conditions discovering that TG2 interacts with various proteins belonging to different functional categories. Herein we show that TG2 interacts with pyruvate kinase M2 (PKM2), a rate limiting enzyme of glycolysis which is responsible for maintaining a glycolytic phenotype in malignant cells and displays non metabolic functions, including transcriptional co-activation and protein kinase activity. Interestingly, the ablation of PKM2 led to the decrease of intracellular TG2's transamidating activity paralleled by an increase of its tyrosine phosphorylation. Along with this, a significant decrease of ULK1 and Beclin1 was also recorded, thus suggesting a block in the upstream regulation of autophagosome formation. These data suggest that the PKM2/TG2 interplay plays an important role in the regulation of autophagy in particular under cellular stressful conditions such as those displayed by cancer cells

    An extracellular transglutaminase is required for apple pollen tube growth

    Get PDF
    An extracellular form of the calcium-dependent protein-crosslinking enzyme TGase (transglutaminase) was demonstrated to be involved in the apical growth of Malus domestica pollen tube. Apple pollen TGase and its substrates were co-localized within aggregates on the pollen tube surface, as determined by indirect immunofluorescence staining and the in situ cross-linking of fluorescently labelled substrates. TGase-specific inhibitors and an anti-TGase monoclonal antibody blocked pollen tube growth, whereas incorporation of a recombinant fluorescent mammalian TGase substrate (histidine-tagged green fluorescent protein:His6– Xpr–GFP) into the growing tube wall enhanced tube length and germination, consistent with a role of TGase as a modulator of cell wall building and strengthening. The secreted pollen TGase catalysed the cross-linking of both PAs (polyamines) into proteins (released by the pollen tube) and His6-Xpr-GFP into endogenous or exogenously added substrates. A similar distribution of TGase activitywas observed in planta on pollen tubes germinating inside the style, consistent with a possible additional role for TGase in the interaction between the pollen tube and the style during fertilization

    Specific fluorescent labeling of chicken myofibril Z-line proteins catalyzed by guinea pig liver transglutaminase

    Get PDF
    Guinea pig liver transglutaminase has been found to catalyze the covalent incorporation of dansylcadaverine into chicken skeletal muscle myofibril proteins. Epifluorescence microscopy reveals that the incorporated dansylcadaverine is specifically localized at or near the myofibril Z line. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) indicates that actin constitutes a major fraction of the labeled material; the Z-line proteins alpha-actinin and desmin also show significant labeling, as well as tropomyosin, several additional unidentified proteins, and material with an extremely high molecular weight. The Z-line-specific fluorescence can be removed by brief trypsinization, which releases fluorescent alpha-actinin into the supernate. The majority of the fluorescent protein species are resistant to extraction by either 0.6 M KCl or KI. These results, in conjunction with the microscopic localization, suggest that the dansyl- labeled proteins are constituents of the myofibril Z line. A significant amount of fluorescently labeled transglutaminase is also present in labeled myofibrils, which is resistant to extraction with either 0.6 M KCl or KI. This result indicates a strong, noncovalent interaction between the transglutaminase molecule and the myofibril Z line

    Celiac disease

    Get PDF
    Celiac disease is a chronic intestinal disease caused by intolerance to gluten. It is characterized by immune-mediated enteropathy, associated with maldigestion and malabsorption of most nutrients and vitamins. In predisposed individuals, the ingestion of gluten-containing food such as wheat and rye induces a flat jejunal mucosa with infiltration of lymphocytes. The main symptoms are: stomach pain, gas, and bloating, diarrhea, weight loss, anemia, edema, bone or joint pain. Prevalence for clinically overt celiac disease varies from 1:270 in Finland to 1:5000 in North America. Since celiac disease can be asymptomatic, most subjects are not diagnosed or they can present with atypical symptoms. Furthermore, severe inflammation of the small bowel can be present without any gastrointestinal symptoms. The diagnosis should be made early since celiac disease causes growth retardation in untreated children and atypical symptoms like infertility or neurological symptoms. Diagnosis requires endoscopy with jejunal biopsy. In addition, tissue-transglutaminase antibodies are important to confirm the diagnosis since there are other diseases which can mimic celiac disease. The exact cause of celiac disease is unknown but is thought to be primarily immune mediated (tissue-transglutaminase autoantigen); often the disease is inherited. Management consists in life long withdrawal of dietary gluten, which leads to significant clinical and histological improvement. However, complete normalization of histology can take years

    Detection of secretory IgA antibodies against gliadin and human tissue transglutaminase in stool to screen for coeliac disease in children: validation study

    Get PDF
    Objective To evaluate two commercial stool tests for detection of secretory IgA antibodies against gliadin and human tissue transglutaminase for diagnosis of coeliac disease in children with symptoms.Setting Tertiary care children's hospital.Participants Coded stool samples from 20 children with newly diagnosed coeliac disease and 64 controls. Six children with coeliac disease had stool tests every two weeks for three months after starting a gluten-free diet.Main outcome measures Secretory IgA antibodies against gliadin and human tissue transglutaminase in stool samples, determined in duplicate by using recommended cut-off limits.Results Sensitivity of faecal antibodies against human tissue transglutaminase was 10% (95% confidence interval 1% to 32%), and specificity was 98% (91% to 100%). For antibodies against gliadin, sensitivity was 6% (0% to 29%) and specificity was 97% (89% to 100%). Optimisation of cut-off limits by receiver operating characteristic analysis and use of results of both tests increased sensitivity to 82%, but specificity decreased to 58%. All follow-up stool tests remained negative, except for two positive anti-gliadin results in one patient, six and 10 weeks after the gluten-free diet was started.Conclusions Neither stool test was suitable for screening for coeliac disease in children with symptoms

    Upregulation of Transglutaminase andε(γ-Glutamyl)-Lysine in the Fisher-Lewis Rat Model of Chronic Allograft Nephropathy

    Get PDF
    Background. Tissue transglutaminase (TG2), a cross-linking enzyme, modulates deposition of extracellular matrix protein in renal fibrosis. This study aimed to examine TG2 and its cross-link product ε(γ-glutamyl)-lysine in the Fisher-Lewis rat renal transplantation (RTx) model of chronic allograft nephropathy (CAN). Materials and Methods. Left renal grafts from male Fisher and Lewis were transplanted into Lewis rats, generating allografts and isografts, respectively. Blood pressure, renal function, and proteinuria were monitored for up to 52 weeks. At termination, CAN was assessed in the renal tissue by light and electron microscopy, TG2 and ε(γ-glutamyl)-lysine by immunofluorescence, and the urinary ε(γ-glutamyl)-lysine by high performance liquid chromatography. Results. Compared to the isograft, the allografts were hypertensive, proteinuric, and uraemic and developed CAN. Extracellular TG2 (glomerulus: 64.55 + 17.61 versus 2.11 + 0.17, P<0.001; interstitium: 13.72 + 1.62 versus 3.19 + 0.44, P<0.001), ε(γ-glutamyl)-lysine (glomerulus: 21.74 + 2.71 versus 1.98 + 0.37, P<0.01; interstitium: 37.96 + 17.06 versus 0.42 + 0.11, P<0.05), TG2 enzyme activity (1.09 + 0.13 versus 0.41 + 0.03 nmol/h/mg protein, P<0.05), TG2 mRNA (20-fold rise), and urinary ε(γ-glutamyl)-lysine (534.2 + 198.4 nmol/24 h versus 57.2 + 4.1 nmol/24 h,P<0.05) levels were significantly elevated in the allografts and showed a positive linear correlation with tubulointerstitial fibrosis. Conclusion. CAN was associated with upregulation of renal TG2 pathway, which has a potential for pharmacological intervention. The elevated urinary ε(γ-glutamyl)-lysine, measured for the first time in RTx, is a potential biomarker of CA

    Production of the main celiac disease autoantigen by transient expression in Nicotiana benthamiana

    Get PDF
    Celiac Disease (CD) is a gluten sensitive enteropathy that remains widely undiagnosed and implementation of massive screening tests is needed to reduce the long term complications associated to untreated CD. The main CD autoantigen, human tissue transglutaminase (TG2), is a challenge for the different expression systems available since its cross-linking activity affects cellular processes. Plant-based transient expression systems can be an alternative for the production of this protein. In this work, a transient expression system for the production of human TG2 in Nicotiana benthamiana leaves was optimized and reactivity of plant-produced TG2 in CD screening test was evaluated. First, a subcellular targeting strategy was tested. Cytosolic, secretory, endoplasmic reticulum (C-terminal SEKDEL fusion) and vacuolar (C-terminal KISIA fusion) TG2 versions were transiently expressed in leaves and recombinant protein yields were measured. ER-TG2 and vac-TG2 levels were 9- to 16-fold higher than their cytosolic and secretory counterparts. As second strategy, TG2 variants were co-expressed with a hydrophobic elastin-like polymer (ELP) construct encoding for 36 repeats of the pentapeptide VPGXG in which the guest residue X were V and F in ratio 8:1. Protein bodies (PB) were induced by the ELP, with a consequent two-fold-increase in accumulation of both ER-TG2 and vac-TG2. Subsequently, ER-TG2 and vac-TG2 were produced and purified using immobilized metal ion affinity chromatography. Plant purified ER-TG2 and vac-TG2 were recognized by three anti-TG2 monoclonal antibodies that bind different epitopes proving that plant-produced antigen has immunochemical characteristics similar to those of human TG2. Lastly, an ELISA was performed with sera of CD patients and healthy controls. Both vac-TG2 and ER-TG2 were positively recognized by IgA of CD patients while they were not recognized by serum from non-celiac controls. These results confirmed the usefulness of plant-produced TG2 to develop screening assays. In conclusion, the combination of subcellular sorting strategy with co-expression with a PB inducing construct was sufficient to increase TG2 protein yields. This type of approach could be extended to other problematic proteins, highlighting the advantages of plant based production platforms.Fil: Marin Viegas, Vanesa Soledad. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Acevedo, Gonzalo Raúl. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bayardo, Mariela Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Chirdo, Fernando Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Petruccelli, Silvana. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentin
    • …
    corecore