20 research outputs found

    Model and Integrate Medical Resource Available Times and Relationships in Verifiably Correct Executable Medical Best Practice Guideline Models (Extended Version)

    Full text link
    Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients' death rate is significantly reduced by computerizing medical best practice guidelines. Recent data also show that some morbidity and mortality in emergency care are directly caused by delayed or interrupted treatment due to lack of medical resources. However, medical guidelines usually do not provide guidance on medical resource demands and how to manage potential unexpected delays in resource availability. If medical resources are temporarily unavailable, safety properties in existing executable medical guideline models may fail which may cause increased risk to patients under care. The paper presents a separately model and jointly verify (SMJV) architecture to separately model medical resource available times and relationships and jointly verify safety properties of existing medical best practice guideline models with resource models being integrated in. The SMJV architecture allows medical staff to effectively manage medical resource demands and unexpected resource availability delays during emergency care. The separated modeling approach also allows different domain professionals to make independent model modifications, facilitates the management of frequent resource availability changes, and enables resource statechart reuse in multiple medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of the SMJV architecture. The case study indicates that the SMJV architecture is able to identify unsafe properties caused by unexpected resource delays.Comment: full version, 12 page

    Model-Based Approach for Cyber-Physical Systems Applications Development

    Get PDF
    Design and development of Cyber-Physical systems (CPS) are challenging due to their computational and physical dynamics. However, while studies investigated on model-driven approaches in other information system domains, research concerning how to support CPS design and development using modelling approaches and tools, is limited. Our research shows how model-based approaches and tools can be used to model scenarios in CPS application development while ensuring the CPS dynamism remains intact. We present a model followed by a prototype as an artefact to show a CPS design for health related monitoring. The paper introduces AutoWheel, an automatic wheelchair based monitoring system, as a case study for our design. The proposed design focuses on modeling the system and verifying the behavior of its working in the given mobility related health scenarios. The motivation of the AutoWheel project arises from the need for building low cost manageable technological interface and information system especially for the people in developing countries

    Executable clinical models for acute care

    Get PDF
    Medical errors are the third leading cause of death in the U.S., after heart disease and cancer, causing at least 250,000 deaths every year. These errors are often caused by slips and lapses, which include, but are not limited to delayed diagnosis, delayed or ineffective therapeutic interventions, and unintended deviation from the best practice guidelines. These situations may occur more often in acute care settings, where the staff are overloaded, under stress, and must make quick decisions based on the best available evidence. An \textit{integrated clinical guidance system} can reduce such medical errors by helping medical staff track and assess patient state more accurately and adapt the care plan according to the best practice guidelines. However, a main prerequisite for developing a guideline system is to create computer interpretable representations of the clinical knowledge. The main focus of this thesis is to develop executable clinical models for acute care. We propose an organ-centric pathophysiology-based modeling paradigm, in which we translate the medical text into executable interactive disease and organ state machines. We formally verify the correctness and safety of the developed models. Afterward, we integrate the models into a best practice guidance system. We study the cardiac arrest and sepsis case studies to demonstrate the applicability of proposed modeling paradigm. We validate the clinical correctness and usefulness of our model-driven cardiac arrest guidance system in an ACLS training class. We have also conducted a preliminary clinical simulation of our model-driven sepsis screening system

    Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

    Get PDF
    This open access book coherently gathers well-founded information on the fundamentals of and formalisms for modelling cyber-physical systems (CPS). Highlighting the cross-disciplinary nature of CPS modelling, it also serves as a bridge for anyone entering CPS from related areas of computer science or engineering. Truly complex, engineered systems—known as cyber-physical systems—that integrate physical, software, and network aspects are now on the rise. However, there is no unifying theory nor systematic design methods, techniques or tools for these systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. A technique known as Multi-Paradigm Modelling has recently emerged suggesting to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s), and then weaving the results together to form a representation of the system. If properly applied, it enables, among other global aspects, performance analysis, exhaustive simulation, and verification. This book is the first systematic attempt to bring together these formalisms for anyone starting in the field of CPS who seeks solid modelling foundations and a comprehensive introduction to the distinct existing techniques that are multi-paradigmatic. Though chiefly intended for master and post-graduate level students in computer science and engineering, it can also be used as a reference text for practitioners

    Runtime observable and adaptable UML state machine-based software components generation and verification: [email protected] approach

    Get PDF
    Cyber-Physical Systems (CPSs) are embedded computing systems in which computation interacts closely with the physical world through sensors and actuators. CPSs are used to control context aware systems. These types of systems are complex systems that will have different configurations and their control strategy can be configured depending the environmental data and current situation of the context. Therefore, in current industrial environments, the software of embedded and Cyber-Physical systems have to cope with increasing complexity, uncertain scenarios and safe requirements at runtime. The UML State Machine is a powerful formalism to model the logical behaviour of these types of systems, and in Model Driven Engineering (MDE) we can generate code automatically from these models. MDE aims to overcome the complexity of software construction by allowing developers to work at the high-level models of software systems instead of low-level codes. However, determining and evaluating the runtime behaviour and performance of models of CPSs using commercial MDE tools is a challenging task. Such tools provide little support to observe at model-level the execution of the code generated from the model, and to collect the runtime information necessary to, for example, check whether defined safe properties are met or not. One solution to address these requirements is having the software components information in model terms at runtime ([email protected]). Work on [email protected] seeks to extend the applicability of models produced in MDE approaches to the runtime environment. Having the model at runtime is the first step towards the runtime verification. Runtime verification can be performed using the information of model elements (current state, event, next state,etc.) This thesis aims at advancing the current practice on generating automatically Unified Modeling Language - State Machine (UML-SM) based software components that are able to provide their internal information in model terms at runtime. Regarding automation, we propose a tool supported methodology to automatically generate these software components. As for runtime monitoring, verification and adaptation, we propose an externalized runtime module that is able to monitor and verify the correctness of the software components based on their internal status in model terms at component and system level. In addition, if an error is detected, the runtime adaptation module is activated and the safe adaptation process starts in the involved software components. All things considered, the overall safe level of the software components and CPSs is enhanced.Sistema Ziber-Fisikoak, konputazio sistema txertatuez osatuta daude. Konputazio sistema txertatu hauek, mundu birtuala mundu fisikoarekin uztartzeko gaitasuna eskaintzen dute. Sistema ziberfisikoak orokorrean sistema konplexuak izan ohi dira eta inguruan gertazen denaren araberako konfigurazio desberdinak izan ohi dituzte. Gaur egungo industria ingurunetan, sistema hauek daramaten kontroleko softwarea asko handitu da eta beren konplexutasunak ere gorakada handia izan du: aurrez ezagunak ez diren baldintza eta inguruetan lan egin beharra dute askotan, denbora errealeko eskakizunak eta segurtasun eskakizunak ere beteaz. UML State Machine formalismoa, goian aipaturiko sistema mota horien portaera logikoa modelizatzeko erabiltzen den formalismo indartsu bat da. Formalismo honen baitan eta Model Driven Engineering (MDE) enfokea jarraituaz, sistema modelatzeko erabilitako grafikoetatik sisteman txertatua izango den kodea automatikoki sor genezake. MDEk softwarea sortzeko orduan izan genezakeen konplexutasuna gainditu nahi du, garatzailei software-sistemen goi-mailako ereduetan lan egiteko aukera emanez. Hala ere, MDE-an oinarrituriko tresna komertzialak erabiliaz, zaila izaten da berauen bidez sorturiko kodearen errendimendua eta portaera sistema exekuzioan dagoenean ebaluatzea. Tresna horiek laguntza gutxi eskaintzen dute modelotatik sortutako kodea exekutatzen ari denean sisteman zer gertatzen ari denaren informazioa modeloaren terminoetan jasotzeko. Beraz, exekuzio denboran, oso zaila izaten da sistemaren portaera egokia den edo ez aztertzea modelo mailako informazio hori erabiliaz. Eskakizun horiek kudeatzeko modu bat, software modeloaren informazioa denbora errealean izatea da ([email protected] enfokea). [email protected] enfokearen helburu nagusietako bat, MDE enfokearekin garapen fasean sortutako modeloak exekuzio denboran (runtime-en) erabilgarri izatean datza. Exekuzio denboran egiaztapen edo testing-a egin ahal izateko lehen urratsa, testeatu nahi den software horren modeloa exekuzio denboran eskuragarri izatea da. Honela, exekuzio denborako egiaztapen edo berifikazioak softwarea modelatzeko erabili ditugun elementu berberak erabiliaz egin daitke (egungo egoera, gertaera, hurrengo egoera, eta abar). Tesi honen helburutako bat UML-State Machine modeloetan oinarritutako eta exekuzio denboran beren barne egoeraren informazioa modeloko elementu bidez probestu ahalko duten software osagaiak modu automatikoan sortzea da. Automatizazioari dagokionez, lehenik eta behin, software-osagai horiek automatikoki sortzen dituzten tresnak eskaintzen dituen metodologia proposatzen dugu. Bigarrenik, UMLSM oinarritutako software osagaiak automatikoki sortuko dituen herraminta bera proposatzen dugu. Exekuzio denboran eguneraketen jarraipenari, egiaztatzeari eta egokitzeari dagokionez, barne egoera UML-SM modelo terminoetan eskaintzen duten software osagaiak egiaztatzeko eta egokitzeko gai den kanpo exekuzio modulo bat proposatzen dugu. Honela, errore bat detektatzen bada, exekuzio garaian egokitze modulua aktibatuko da egokitzapen prozesu segurua martxan jarriaz. Honek, dagokion software osagaiari abixua bidaliko dio egokitzapena egin dezan. Gauza guztiak kontuan hartuta, software osagaien eta CPSen segurtasun maila orokorra hobetua izango da.Los sistemas cyber-físicos (CPSs) son sistemas de computación embebidos en los que la computación interactúa estrechamente con el mundo físico a través de sensores y actuadores. Los CPS se utilizan para controlar sistemas que proveen conocimiento del contexto. Este tipo de sistemas son sistemas complejos que suelen tener diferentes configuraciones y su estrategia de control puede configurarse en función de los datos del entorno y de la situación actual del contexto. Por lo tanto, en los entornos industriales actuales, el software de los sistemas embebidos tiene que hacer frente a la creciente complejidad, los escenarios inciertos y los requisitos de seguridad en tiempo de ejecución. Las máquinas de estado UML son un formalismo muy utilizado en industria para modelar el comportamiento lógico de este tipo de sistemas, y siguiendo el enfoque Model Driven Engineering (MDE) podemos generar código automáticamente a partir de estos modelos. El objetivo de MDE es superar la complejidad de la construcción de software permitiendo a los desarrolladores trabajar en los modelos de alto nivel de los sistemas de software en lugar de tener que codificar el control mediante lenguajes de programación de bajo nivel. Sin embargo, determinar y evaluar el comportamiento y el rendimiento en tiempo de ejecución de estos modelos generados mediante herramientas comerciales de MDE es una tarea difícil. Estas herramientas proporcionan poco apoyo para observar a nivel de modelo la ejecución del código generado a partir del modelo. Por lo tanto, no son muy adecuadas para poder recopilar la información de tiempo de ejecución necesaria para, por ejemplo, comprobar si se cumplen o no las restricciones definidas. Un enfoque para gestionar estos requisitos, es tener la información de los componentes de software en términos de modelo en tiempo de ejecución ([email protected]). El trabajo en [email protected] busca ampliar la aplicabilidad de los modelos producidos en fase de desarrollo mediante el enfoque MDE al entorno de tiempo de ejecución. Tener el modelo en tiempo de ejecución es el primer paso para poder llevar a cabo la verificación en tiempo de ejecución. Así, esta verificación se podrá realizar utilizando la información de los elementos del modelo (estado actual, evento, siguiente estado, etc.). El objetivo de esta tesis es avanzar en la práctica actual de generar automáticamente componentes software basados en Unified Modeling Language - State Machine (UML-SM) que sean capaces de proporcionar información interna en términos de modelos en tiempo de ejecución. En cuanto a la automatización, en primer lugar, proponemos una metodología soportada por herramientas para generar automáticamente estos componentes de software. En segundo lugar, proponemos un marco de trabajo de generación de componentes de software basado en UML-SM. En cuanto a la monitorización, verificación y adaptación en tiempo de ejecución, proponemos un módulo de tiempo de ejecución externalizado que es capaz de monitorizar y verificar la validez de los componentes del software en función de su estado interno en términos de modelo. Además, si se detecta un error, se activa el módulo de adaptación en tiempo de ejecución y se inicia el proceso de adaptación seguro en el componente de software correspondiente. Teniendo en cuenta todo esto, el nivel de seguridad global de los componentes del software y de los CPS se ve mejorado

    Improving Glycemic Control for Post-Orthopedic Surgery Patients with Type 2 Diabetes

    Get PDF
    Type 2 diabetes is a growing problem within the United States and a leading cause of mortality. The complications and comorbidities associated with type 2 diabetes cause a great financial and resource burden on the healthcare system, and cause negative mental and physical health outcomes for the individual living with it. The complications of poor glycemic control are especially notable following a surgical procedure that requires an inpatient stay. The practice problem for this project is glycemic control following an orthopedic surgery requiring hospitalization. To further analyze the practice problem and to create a clinical practice guideline a robust literature review was completed. The literature was reviewed and graded utilizing the Oxford Centre for Evidence-based Medicine Levels of Evidence. Reputable professional organization guidelines and literary works were also utilized. The Chronic Care Model was utilized as the framework. Central themes translated into the clinical practice guideline include the importance of long-term preoperative glycemic control, the importance of assessing the patients’ skill for self-management, and the importance of mental health. To ensure the appropriateness of the clinical practice guideline for translation into practice, the AGREE II tool was utilized by the author, and the project team. Improving postoperative glycemic control for patients living with type 2 diabetes may have a powerful effect on the patients’ ability to contribute to society, decrease the healthcare burden, and improve the mental and physical health of the patient

    Model-Based Engineering of Collaborative Embedded Systems

    Get PDF
    This Open Access book presents the results of the "Collaborative Embedded Systems" (CrESt) project, aimed at adapting and complementing the methodology underlying modeling techniques developed to cope with the challenges of the dynamic structures of collaborative embedded systems (CESs) based on the SPES development methodology. In order to manage the high complexity of the individual systems and the dynamically formed interaction structures at runtime, advanced and powerful development methods are required that extend the current state of the art in the development of embedded systems and cyber-physical systems. The methodological contributions of the project support the effective and efficient development of CESs in dynamic and uncertain contexts, with special emphasis on the reliability and variability of individual systems and the creation of networks of such systems at runtime. The project was funded by the German Federal Ministry of Education and Research (BMBF), and the case studies are therefore selected from areas that are highly relevant for Germany’s economy (automotive, industrial production, power generation, and robotics). It also supports the digitalization of complex and transformable industrial plants in the context of the German government's "Industry 4.0" initiative, and the project results provide a solid foundation for implementing the German government's high-tech strategy "Innovations for Germany" in the coming years

    Component-based software engineering: a quantitative approach

    Get PDF
    Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaBackground: Often, claims in Component-Based Development (CBD) are only supported by qualitative expert opinion, rather than by quantitative data. This contrasts with the normal practice in other sciences, where a sound experimental validation of claims is standard practice. Experimental Software Engineering (ESE) aims to bridge this gap. Unfortunately, it is common to find experimental validation efforts that are hard to replicate and compare, to build up the body of knowledge in CBD. Objectives: In this dissertation our goals are (i) to contribute to evolution of ESE, in what concerns the replicability and comparability of experimental work, and (ii) to apply our proposals to CBD, thus contributing to its deeper and sounder understanding. Techniques: We propose a process model for ESE, aligned with current experimental best practices, and combine this model with a measurement technique called Ontology-Driven Measurement (ODM). ODM is aimed at improving the state of practice in metrics definition and collection, by making metrics definitions formal and executable,without sacrificing their usability. ODM uses standard technologies that can be well adapted to current integrated development environments. Results: Our contributions include the definition and preliminary validation of a process model for ESE and the proposal of ODM for supporting metrics definition and collection in the context of CBD. We use both the process model and ODM to perform a series experimental works in CBD, including the cross-validation of a component metrics set for JavaBeans, a case study on the influence of practitioners expertise in a sub-process of component development (component code inspections), and an observational study on reusability patterns of pluggable components (Eclipse plug-ins). These experimental works implied proposing, adapting, or selecting adequate ontologies, as well as the formal definition of metrics upon each of those ontologies. Limitations: Although our experimental work covers a variety of component models and, orthogonally, both process and product, the plethora of opportunities for using our quantitative approach to CBD is far from exhausted. Conclusions: The main contribution of this dissertation is the illustration, through practical examples, of how we can combine our experimental process model with ODM to support the experimental validation of claims in the context of CBD, in a repeatable and comparable way. In addition, the techniques proposed in this dissertation are generic and can be applied to other software development paradigms.Departamento de Informática of the Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT/UNL); Centro de Informática e Tecnologias da Informação of the FCT/UNL; Fundação para a Ciência e Tecnologia through the STACOS project(POSI/CHS/48875/2002); The Experimental Software Engineering Network (ESERNET);Association Internationale pour les Technologies Objets (AITO); Association forComputing Machinery (ACM

    Temporal meta-model framework for Enterprise Information Systems (EIS) development

    Get PDF
    This thesis has developed a Temporal Meta-Model Framework for semi-automated Enterprise System Development, which can help drastically reduce the time and cost to develop, deploy and maintain Enterprise Information Systems throughout their lifecycle. It proposes that the analysis and requirements gathering can also perform the bulk of the design phase, stored and available in a suitable model which would then be capable of automated execution with the availability of a set of specific runtime components
    corecore