10,803 research outputs found

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Supporting group maintenance through prognostics-enhanced dynamic dependability prediction

    Get PDF
    Condition-based maintenance strategies adapt maintenance planning through the integration of online condition monitoring of assets. The accuracy and cost-effectiveness of these strategies can be improved by integrating prognostics predictions and grouping maintenance actions respectively. In complex industrial systems, however, effective condition-based maintenance is intricate. Such systems are comprised of repairable assets which can fail in different ways, with various effects, and typically governed by dynamics which include time-dependent and conditional events. In this context, system reliability prediction is complex and effective maintenance planning is virtually impossible prior to system deployment and hard even in the case of condition-based maintenance. Addressing these issues, this paper presents an online system maintenance method that takes into account the system dynamics. The method employs an online predictive diagnosis algorithm to distinguish between critical and non-critical assets. A prognostics-updated method for predicting the system health is then employed to yield well-informed, more accurate, condition-based suggestions for the maintenance of critical assets and for the group-based reactive repair of non-critical assets. The cost-effectiveness of the approach is discussed in a case study from the power industry

    Prediction of remaining life of power transformers based on left truncated and right censored lifetime data

    Get PDF
    Prediction of the remaining life of high-voltage power transformers is an important issue for energy companies because of the need for planning maintenance and capital expenditures. Lifetime data for such transformers are complicated because transformer lifetimes can extend over many decades and transformer designs and manufacturing practices have evolved. We were asked to develop statistically-based predictions for the lifetimes of an energy company's fleet of high-voltage transmission and distribution transformers. The company's data records begin in 1980, providing information on installation and failure dates of transformers. Although the dataset contains many units that were installed before 1980, there is no information about units that were installed and failed before 1980. Thus, the data are left truncated and right censored. We use a parametric lifetime model to describe the lifetime distribution of individual transformers. We develop a statistical procedure, based on age-adjusted life distributions, for computing a prediction interval for remaining life for individual transformers now in service. We then extend these ideas to provide predictions and prediction intervals for the cumulative number of failures, over a range of time, for the overall fleet of transformers.Comment: Published in at http://dx.doi.org/10.1214/00-AOAS231 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Investigation into the correlation between paper insulation thermal ageing estimation using the arrhenius equation and other methods for generator transformers

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering Date submitted: 28 August 2015Many generator transformers were installed many years ago during the initial commissioning of Eskom’s power stations. Many of these transformers have started showing signs of significant ageing of the paper insulation and hence require regular monitoring. There are two methods that are currently being employed to assess the degree of ageing of the paper insulation in a generator transformer, which are paper sampling and furan level measurement. This dissertation investigates an alternative method of predicting the degree of ageing of the paper insulation instead of what is used currently. This method uses the Arrhenius equation that relates time and temperature to determine the degree of degradation of organic materials. The reliability of the Arrhenius estimation method is assessed by comparing the predicted DP (Degree of polymerisation) values with the measured DP values of the same transformer paper insulation. The results obtained showed that there is reasonable correlation between the DP values estimated from the Arrhenius equation and the DP values estimated from the measured furan levels. The accuracy of the prediction method is reduced when the oil temperature greatly differs from the paper insulation temperature. The application of the Arrhenius equation to estimate the ageing of paper insulation is a great milestone in the quest to predict the remaining life of a transformer. It is the only method available to do this prediction and using online temperature measurement on transformers makes the method more reliable.MT 201

    Investigating return on online DGA investments for service aged power transformer

    Get PDF
    Over the years, online dissolved gas analysis (O-DGA) has gained traction with power transformer asset managers. Many asset engineers have realized the technical benefits of the shift from traditional laboratory-based DGA to O-DGA. However, the main stumbling block in widespread O-DGA usage is convincing the commercial team members of the economic benefits gained by installing an O-DGA device. Usually, with an O-DGA device, there are different costs associated - the upfront purchase cost, usage costs over O-DGA monitor lifetime, and O-DGA maintenance costs. In this case study, an investigation is carried out on the return of investment for an O-DGA monitor for a service-aged power transformer, utilizing the principles presented in IEEE c57.143. Two monitors – a higher-priced O-DGA monitor with minor maintenance versus a lower-priced O-DGA with regular maintenance requirements are compared

    Investigating return on online DGA investments for service aged power transformer

    Get PDF
    Over the years, online dissolved gas analysis (O-DGA) has gained traction with power transformer asset managers. Many asset engineers have realized the technical benefits of the shift from traditional laboratory-based DGA to O-DGA. However, the main stumbling block in widespread O-DGA usage is convincing the commercial team members of the economic benefits gained by installing an O-DGA device. Usually, with an O-DGA device, there are different costs associated - the upfront purchase cost, usage costs over O-DGA monitor lifetime, and O-DGA maintenance costs. In this case study, an investigation is carried out on the return of investment for an O-DGA monitor for a service-aged power transformer, utilizing the principles presented in IEEE c57.143. Two monitors – a higher-priced O-DGA monitor with minor maintenance versus a lower-priced O-DGA with regular maintenance requirements are compared

    Improved power transformer condition monitoring under uncertainty through soft computing and probabilistic health index

    Get PDF
    Condition monitoring of power transformers is crucial for the reliable and cost-effective operation of the power grid. The health index (HI) formulation is a pragmatic approach to combine multiple information sources and generate a consistent health state indicator for asset management planning. Generally, existing transformer HI methods are based on expert knowledge or data-driven models of specific transformer subsystems. However, the effect of uncertainty is not considered when integrating expert knowledge and data-driven models for the system-levelHI estimation. With the increased dynamic and non-deterministic engineering problems, the sources of uncertainty are increasing across power and energy applications, e.g. electric vehicles with new dynamic loads or nuclear power plants with de-energized periods, and transformer health assessment under uncertainty is becoming critical for accurate condition monitoring. In this context, this paper presents a novel soft computing driven probabilistic HI framework for transformer health monitoring. The approach encapsulates data analytics and expert knowledge along with different sources of uncertainty and infers a transformer HI value with confidence intervals for decision-making under uncertainty. Using real data from a nuclear power plant, the proposed framework is compared with traditional HI implementations and results confirm the validity of the approach for transformer health assessment

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15
    corecore