8,276 research outputs found

    Long-term photometry of the eclipsing dwarf nova V893 Scorpii: Orbital period, oscillations, and a possible giant planet

    Full text link
    The cataclysmic variable V893 Sco is an eclipsing dwarf nova which, apart from outbursts with comparatively low amplitudes, exhibits a particularly strong variability during quiescence on timescales of days to seconds.The present study aims to update the outdated orbital ephemerides published previously, to investigate deviations from linear ephemerides, and to characterize non-random brightness variations in a range of timescales. Light curves of V893 Sco were observed on 39 nights, spanning a total time base of about 14 years. They contain 114 eclipses which were used to significantly improve the precision of the orbital period and to study long-term variations of the time of revolution. Oscillations and similar brightness variations were studied with Fourier techniques in the individual light curves. The orbital period exhibits long-term variations with a cycle time of 10.2 years. They can be interpreted as a light travel time effect caused by the presence of a giant planet with approximately 9.5 Jupiter masses in a 4.5 AU orbit around V893 Sco. On some nights transient semi-periodic variations on timescales of several minutes can be seen which may be identified as quasi-periodic oscillations. However, it is difficult to distinguish whether they are caused by real physical mechanisms or if they are the effect of an accidental superposition of unrelated flickering flares. Simulations to investigate this question are presented.Comment: Accepted for publication in Astronomy & Astrophysics (acceptance date: 2014, March 31

    Excitation of Trapped Waves in Simulations of Tilted Black Hole Accretion Disks with Magnetorotational Turbulence

    Full text link
    We analyze the time dependence of fluid variables in general relativistic, magnetohydrodynamic simulations of accretion flows onto a black hole with dimensionless spin parameter a/M=0.9. We consider both the case where the angular momentum of the accretion material is aligned with the black hole spin axis (an untilted flow) and where it is misaligned by 15 degrees (a tilted flow). In comparison to the untilted simulation, the tilted simulation exhibits a clear excess of inertial variability, that is, variability at frequencies below the local radial epicyclic frequency. We further study the radial structure of this inertial-like power by focusing on a radially extended band at 118 (M/10Msol)^-1 Hz found in each of the three analyzed fluid variables. The three dimensional density structure at this frequency suggests that the power is a composite oscillation whose dominant components are an over dense clump corotating with the background flow, a low order inertial wave, and a low order inertial-acoustic wave. Our results provide preliminary confirmation of earlier suggestions that disk tilt can be an important excitation mechanism for inertial waves.Comment: 8 Pages, 6 Figures, accepted for publication in Ap

    A unified model for the dynamics of driven ribbon with strain and magnetic order parameters

    Full text link
    We develop a unified model to explain the dynamics of driven one dimensional ribbon for materials with strain and magnetic order parameters. We show that the model equations in their most general form explain several results on driven magnetostrictive metallic glass ribbons such as the period doubling route to chaos as a function of a dc magnetic field in the presence of a sinusoidal field, the quasiperiodic route to chaos as a function of the sinusoidal field for a fixed dc field, and induced and suppressed chaos in the presence of an additional low amplitude near resonant sinusoidal field. We also investigate the influence of a low amplitude near resonant field on the period doubling route. The model equations also exhibit symmetry restoring crisis with an exponent close to unity. The model can be adopted to explain certain results on magnetoelastic beam and martensitic ribbon under sinusoidal driving conditions. In the latter case, we find interesting dynamics of a periodic one orbit switching between two equivalent wells as a function of an ac magnetic field that eventually makes a direct transition to chaos under resonant driving condition. The model is also applicable to magnetomartensites and materials with two order parameters.Comment: 11 pages, 18 figure

    Secular evolution of compact binaries near massive black holes: gravitational wave sources and other exotica

    Full text link
    The environment near super massive black holes (SMBHs) in galactic nuclei contain a large number of stars and compact objects. A fraction of these are likely to be members of binaries. Here we discuss the binary population of stellar black holes and neutron stars near SMBHs and focus on the secular evolution of such binaries, due to the perturbation by the SMBH. Binaries with highly inclined orbits in respect to their orbit around the SMBH are strongly affected by secular Kozai processes, which periodically change their eccentricities and inclinations (Kozai-cycles). During periapsis approach, at the highest eccentricities during the Kozai-cycles, gravitational wave emission becomes highly efficient. Some binaries in this environment can inspiral and coalesce at timescales much shorter than a Hubble time and much shorter than similar binaries which do not reside near a SMBH. The close environment of SMBHs could therefore serve as catalyst for the inspiral and coalescence of binaries, and strongly affect their orbital properties. Such compact binaries would be detectable as gravitational wave (GW) sources by the next generation of GW detectors (e.g. advanced- LIGO). About 0.5% of such nuclear merging binaries will enter the LIGO observational window while on orbit that are still very eccentric (e>~0.5). The efficient gravitational wave analysis for such systems would therefore require the use of eccentric templates. We also find that binaries very close to the MBH could evolve through a complex dynamical (non-secular) evolution leading to emission of several GW pulses during only a few yrs (though these are likely to be rare). Finally, we note that the formation of close stellar binaries, X-ray binaries and their merger products could be induced by similar secular processes, combined with tidal friction rather than GW emission as in the case of compact object binaries.Comment: 15 pages, 7 Figures. ApJ accepte

    Variable stars with the Kepler space telescope

    Get PDF
    The Kepler space telescope has revolutionised our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars and to peer into the insides of red giants and massive stars. But many discoveries have been made about classical variable stars too, ranging from pulsators like Cepheids and RR Lyraes to eclipsing binary stars and cataclysmic variables, and even supernovae. In this review, which is far from an exhaustive summary of all results obtained with Kepler, we collected some of the most interesting discoveries, and ponder on the role for amateur observers in this golden era of stellar astrophysics.Comment: 12 pages, 6 figures, published in the Journal of the AAVSO: https://www.aavso.org/apps/jaavso/article/3235/, v2: fixed a bad a reference. arXiv admin note: text overlap with arXiv:1108.3083 by other author

    A new deterministic model for chaotic reversals

    Full text link
    We present a new chaotic system of three coupled ordinary differential equations, limited to quadratic nonlinear terms. A wide variety of dynamical regimes are reported. For some parameters, chaotic reversals of the amplitudes are produced by crisis-induced intermittency, following a mechanism different from what is generally observed in similar deterministic models. Despite its simplicity, this system therefore generates a rich dynamics, able to model more complex physical systems. In particular, a comparison with reversals of the magnetic field of the Earth shows a surprisingly good agreement, and highlights the relevance of deterministic chaos to describe geomagnetic field dynamics.Comment: 12 pages, 14 figures, accepted in EPJ

    Orbital Instabilities in a Triaxial Cusp Potential

    Full text link
    This paper constructs an analytic form for a triaxial potential that describes the dynamics of a wide variety of astrophysical systems, including the inner portions of dark matter halos, the central regions of galactic bulges, and young embedded star clusters. Specifically, this potential results from a density profile of the form ρ(m)m1\rho (m) \propto m^{-1}, where the radial coordinate is generalized to triaxial form so that m2=x2/a2+y2/b2+z2/c2m^2 = x^2/a^2 + y^2/b^2 + z^2/c^2 . Using the resulting analytic form of the potential, and the corresponding force laws, we construct orbit solutions and show that a robust orbit instability exists in these systems. For orbits initially confined to any of the three principal planes, the motion in the perpendicular direction can be unstable. We discuss the range of parameter space for which these orbits are unstable, find the growth rates and saturation levels of the instability, and develop a set of analytic model equations that elucidate the essential physics of the instability mechanism. This orbit instability has a large number of astrophysical implications and applications, including understanding the formation of dark matter halos, the structure of galactic bulges, the survival of tidal streams, and the early evolution of embedded star clusters.Comment: 50 pages, accepted for publication in Ap
    corecore