4 research outputs found

    Multi-Mask Self-Supervised Learning for Physics-Guided Neural Networks in Highly Accelerated MRI

    Full text link
    Purpose: To develop an improved self-supervised learning strategy that efficiently uses the acquired data for training a physics-guided reconstruction network without a database of fully-sampled data. Methods: Currently self-supervised learning for physics-guided reconstruction networks splits acquired undersampled data into two disjoint sets, where one is used for data consistency (DC) in the unrolled network and the other to define the training loss. The proposed multi-mask self-supervised learning via data undersampling (SSDU) splits acquired measurements into multiple pairs of disjoint sets for each training sample, while using one of these sets for DC units and the other for defining loss, thereby more efficiently using the undersampled data. Multi-mask SSDU is applied on fully-sampled 3D knee and prospectively undersampled 3D brain MRI datasets, which are retrospectively subsampled to acceleration rate (R)=8, and compared to CG-SENSE and single-mask SSDU DL-MRI, as well as supervised DL-MRI when fully-sampled data is available. Results: Results on knee MRI show that the proposed multi-mask SSDU outperforms SSDU and performs closely with supervised DL-MRI, while significantly outperforming CG-SENSE. A clinical reader study further ranks the multi-mask SSDU higher than supervised DL-MRI in terms of SNR and aliasing artifacts. Results on brain MRI show that multi-mask SSDU achieves better reconstruction quality compared to SSDU and CG-SENSE. Reader study demonstrates that multi-mask SSDU at R=8 significantly improves reconstruction compared to single-mask SSDU at R=8, as well as CG-SENSE at R=2. Conclusion: The proposed multi-mask SSDU approach enables improved training of physics-guided neural networks without fully-sampled data, by enabling efficient use of the undersampled data with multiple masks

    Nuevas estrategias de planificaci贸n de la producci贸n en plantas termosolares con almacenamiento t茅rmico

    Get PDF
    En respuesta a los problemas energ茅ticos actuales, la generaci贸n el茅ctrica basada en energ铆a renovable intermitente, como la energ铆a solar y e贸lica, ha crecido significativamente durante los 煤ltimos a帽os gracias a la disminuci贸n de costes. Este tipo de generaci贸n presenta un car谩cter intermitente, variable y de dif铆cil predicci贸n, lo que dificulta su integraci贸n en la red el茅ctrica. Sin embargo, la energ铆a termosolar posee ciertas caracter铆sticas que pueden compensar en parte las desventajas anteriores. Esta tecnolog铆a captura la radiaci贸n solar en forma de energ铆a t茅rmica por medio del calentamiento de un fluido, para m谩s tarde convertirla en electricidad.Por el hecho de emplear energ铆a t茅rmica como forma de energ铆a intermedia, se complementa muy bien con sistemas de almacenamientot茅rmico. Gracias a este almacenamientoenerg茅tico, este tipo de plantas presenta cierto grado de gestionabilidad, existiendo la posibilidad de regular la producci贸n. Esta propiedad favorece su participaci贸n en el mercado el茅ctrico, donde el objetivo del productor de electricidad es maximizar los beneficios econ贸micos derivados de la venta de electricidad. Este objetivo puede lograrse cuando se planifica la producci贸n en funci贸n del perfil de precios de venta de la electricidad. Puede plantear se, por tanto, un problema de planificaci贸n 贸ptima de la producci贸n. Considerando s贸lo el mercado diario de la electricidad, la resoluci贸n de este problema de optimizaci贸n permite obtener el plan diario de generaci贸n, que debe enviarse al mercado normalmente el d铆a anterior. Se deduce de lo anterior que en el caso de plantas renovables, adem谩s de la necesidad de disponer de una predicci贸n de los precios de la electricidad, se requiere una predicci贸ndel recurso natural para poder abordar el problema. Los objetivos principales de esta Tesis son el dise帽o de nuevas estrategias de planificaci贸n贸ptima de la producci贸n para una planta termosolar con almacenamiento t茅rmico, y el estudio mediante simulaci贸n del rendimiento econ贸mico de cada estrategia cuando se considera la participaci贸n de la planta en el mercado diario de la electricidad. La planificaci贸n 贸ptima se obtiene empleando programaci贸n lineal entera mixta, que es la herramienta matem谩tica m谩s usada para resolver este tipo de problemas. La primera estrategia realiza una replanificaci贸n horaria de la producci贸n, considerando los ingresos derivados de la venta de electricidad en un determinado horizonte temporal y las posibles penalizaciones por desv铆os respecto al plan de generaci贸n ya comprometido. Esta estrategia permite introducir en el problema la nueva informaci贸n disponible cada hora, abordando de esta manera la incertidumbre presente en las predicciones y en el propio modelado del problema. La segunda estrategia incluye un mecanismo que penaliza los cambios en la producci贸n. Adem谩s, este mecanismo penaliza de manera diferente las variaciones seg煤n el estado del bloque de potencia: operaci贸n normal, arranque y parada. De esta manera se consigue aumentar el n煤mero de grados de libertad del problema en busca de mejores soluciones. Esta reducci贸n de la variabilidad en la generaci贸n tiene como ventajas una extensi贸n en la vida 煤til de los elementos del bloque de potencia, una reducci贸n de sus costes de mantenimiento y una simplificaci贸n de la operaci贸n. Se propon e una metodoloq铆a para estimar el m谩ximo nivel de penalizaci贸n de las variaciones que no perjudique el rendimiento econ贸mico. Finalmente, se desarroll贸 otra estrategia que combina la replanificaci贸n horaria con la penalizaci贸n de las variaciones. El impacto econ贸mico de las estrategias anteriores se ha evaluado mediante simulaciones sobre una planta de 50 MW de tipo cilindro parab贸lico. Se han empleado datos realistas para elrecurso solar, los precios de la electricidad, los costes de penalizaci贸n y las predicciones de todos estos datos. Los resultados confirman las mejoras esperadas en cada una de las estrategias.In response to current energy problems, electricity generatiOn based on intermittent renewable energy, such as solar and wind energy, has grown significantly in recent years thanks to the decrease in costs. This type of generation has an intermittent, variable and difficult prediction character, which makes it difficult to integrate into the electricity grid. However, solar thermal energy has certain characteristics that can partially compensate for the above disadvantages. This technology captures solar radiation in the form of thermal energy by heating a fluid, to later convert it into electricity. By using thermal energy as a form of intermediate energy, this technology is complemented very well with thermal energy storage systems. Thanks to this energy storage system, this type of plants has a certain degree of dispatchability, with the possibility of regulating production. This property favors its participation in the electricity market, where the objective of the electricity producer is to maximize the economic benefits derived from the sale of electricity. This objective can be achieved when production is scheduled based on the electricity sales price profile. Therefore, an optimal generation scheduling problem may arise. Considering only theday-ahead energy market, the resolution of this optimization problem allows obtaining the daily generation schedule, which must be sent to the market normally the day befare. It follows from the above that in the case of renewable plants, in addition to the need to have a prediction of electricity prices, a forecast of the natural resource is required to address the problem. The main object铆ves of this Thesis are the design of new strategies for opt铆mal generation scheduling applied to a concentrating solar power plant, and the study by simulation of the economic performance of each strategy when considering the participation of the plant in the day-ahead energy market. The optimal generation schedule is obtained using mixed integer linear programming, which is the most used mathematical tool to solve these types of problems. The first strategy performs an hourly rescheduling of the generation, considering the revenues derived from the sale of electricity in a certain time horizon and the possible penalties for deviat铆ons from the generation schedule already committed. This strategy allows to include into the problem the new information available every hour, thus addressing the uncertainty present in the predictions and in the modeling of the problem itself. The second strategy includes a mechanism that penalizes changes in generation. In addition, this mechanism penalizes variations differently according to the state of the power block: normal operation, startup and shutdown. In this way, it is possible to increase the number of degrees of freedom of the problem in se谩rch of better solutions. This reduction of the variability in the generation has as advantages an extension in the lifetime of the elements of the power block, a reduction of its maintenance costs andan easier plant operability. A methodology is proposed to estimate the maximum level of penalty for variations that does not affect economic performance. Finally, another strategy was developed that combines hourly rescheduling with the penalization of variations. The economic impact of the above strategies has been evaluated through simulations on a 50 MW parabolic trough collector plant. Realistic data for the solar resource, electricity prices, penalty costs and predictions of all these data have been used. The results confirm the expected improvements in each of the strategies
    corecore