18,540 research outputs found

    Ontology-based domain modelling for consistent content change management

    Get PDF
    Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces

    Two Mathematically Equivalent Versions of Maxwell's Equations

    Full text link
    This paper is a review of the canonical proper-time approach to relativistic mechanics and classical electrodynamics. The purpose is to provide a physically complete classical background for a new approach to relativistic quantum theory. Here, we first show that there are two versions of Maxwell's equations. The new version fixes the clock of the field source for all inertial observers. However now, the (natural definition of the effective) speed of light is no longer an invariant for all observers, but depends on the motion of the source. This approach allows us to account for radiation reaction without the Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any assumptions about the structure of the source. The theory provides a new invariance group which, in general, is a nonlinear and nonlocal representation of the Lorentz group. This approach also provides a natural (and unique) definition of simultaneity for all observers. The corresponding particle theory is independent of particle number, noninvariant under time reversal (arrow of time), compatible with quantum mechanics and has a corresponding positive definite canonical Hamiltonian associated with the clock of the source. We also provide a brief review of our work on the foundational aspects of the corresponding relativistic quantum theory. Here, we show that the standard square-root and the Dirac equations are actually two distinct spin-12\tfrac{1}{2} particle equations.Comment: Appeared: Foundations of Physic

    Designing a commutative replicated data type

    Get PDF
    Commuting operations greatly simplify consistency in distributed systems. This paper focuses on designing for commutativity, a topic neglected previously. We show that the replicas of \emph{any} data type for which concurrent operations commute converges to a correct value, under some simple and standard assumptions. We also show that such a data type supports transactions with very low cost. We identify a number of approaches and techniques to ensure commutativity. We re-use some existing ideas (non-destructive updates coupled with invariant identification), but propose a much more efficient implementation. Furthermore, we propose a new technique, background consensus. We illustrate these ideas with a shared edit buffer data type
    corecore