91,989 research outputs found

    Automatic Bridge between BPMN Models and UML Activity Diagrams based on Graph Transformation

    Get PDF
    Model Driven Engineering (MDE) provides available tools, concepts and languages to create and transform models. One of the most important successes of MDE is model transformation; it permits transforming models used by one community to equivalent models used by another one. Moreover, each community of developers has its own tools for verification, testing and test case generation. Hence, a developer of one community who moves to work with another community needs a transformation process from the second community to (his/her) own community and vice versa. Therefore, the target community can benefit from the expertise of the source one and the developers do not begin from zero.In this context, we propose in this paper an automatic transformation to create a bridge between the BPMN and UML communities. We propose an approach and a visual tool for the automatic transformation of BPMN models to UML Activity Diagrams (UML-AD). The proposed approach is based on Meta-Modeling and Graph Transformation, and uses the AToM3 tool. Indeed, we were inspired by the OMG meta-models of BPMN and UML-AD and implemented versions of both meta-models using AToM3. This last allows generating automatically a visual modeling tool for each proposed meta-model. Based on these two meta-models, we propose a graph grammar composed of sixty rules that perform the transformation process. The proposed approach is illustrated through three case studies

    Parallel Graph Transformation for Model Simulation applied to Timed Transition Petri Nets

    Get PDF
    Proceedings of the Workshop on Graph Transformation and Visual Modelling Techniques (GT-VMT 2004)This work discusses the use of parallel graph transformation systems for (multi-formalism) modeling and simulation and their implementation in the meta-modeling tool AToM3. As an example, a simulator for Timed Transition Petri Nets (TTPN) is modeled using parallel graph transformation.This work has been partially sponsored by the SEGRAVIS network and the Spanish Ministry of Science and Technology (TIC2002-01948)

    MDA-based ATL transformation to generate MVC 2 web models

    Full text link
    Development and maintenance of Web application is still a complex and error-prone process. We need integrated techniques and tool support for automated generation of Web systems and a ready prescription for easy maintenance. The MDA approach proposes an architecture taking into account the development and maintenance of large and complex software. In this paper, we apply MDA approach for generating PSM from UML design to MVC 2Web implementation. That is why we have developed two meta-models handling UML class diagrams and MVC 2 Web applications, then we have to set up transformation rules. These last are expressed in ATL language. To specify the transformation rules (especially CRUD methods) we used a UML profiles. To clearly illustrate the result generated by this transformation, we converted the XMI file generated in an EMF (Eclipse Modeling Framework) model.Comment: International Journal of Computer Science & Information Technology-201

    Mapping AADL models to a repository of multiple schedulability analysis techniques

    Get PDF
    To fill the gap between the modeling of real-time systems and the scheduling analysis, we propose a framework that supports seamlessly the two aspects: 1) modeling a system using a methodology, in our case study, the Architecture Analysis and Design Language (AADL), and 2) helping to easily check temporal requirements (schedulability analysis, worst-case response time, sensitivity analysis, etc.). We introduce an intermediate framework called MoSaRT, which supports a rich semantic concerning temporal analysis. We show with a case study how the input model is transformed into a MoSaRT model, and how our framework is able to generate the proper models as inputs to several classic temporal analysis tools

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes con°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 di®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales

    UML to XML-Schema Transformation: a Case Study in Managing Alternative Model Transformations in MDA

    Get PDF
    In a Model Driven Architecture (MDA) software development process, models are\ud repeatedly transformed to other models in order to finally achieve a set of models with enough details to implement a system. Generally, there are multiple ways to transform one model into another model. Alternative target models differ in their quality properties and the selection of a particular model is determined on the basis of specific requirements. Software engineers must be able to identify, compare and select the appropriate transformations within the given set of requirements. The current transformation languages used for describing and executing model transformations only provide means to specify the transformations but do not help to identify and select from the alternative transformations. In this paper we propose a process and a set of techniques for constructing a transformation space for a given transformation problem. The process uses a source model, its meta-model and the meta-model of the target as input and generates a transformation space. Every element in that space represents a transformation that produces a result that is an instance of the target meta-model. The requirements that must be fulfilled by the result are captured and represented in a quality model. We explain our approach using an illustrative example for transforming a platform independent model expressed in UML into platform specific models that represent XML schemas. A particular quality model of extensibility is presented in the paper
    corecore