4,302 research outputs found

    Ισογεωμετρική Στατική Ανάλυση με T-SPLines

    Get PDF
    Σκοπός αυτής της διπλωματικής είναι η διερεύνηση της ισογεωμετρικής στατικής ανάλυσης χρησιμοποιώντας ΄ενα νέο έιδος συναρτήσεων σχήματος , τις T-SPLines. Τόσο οι T-SPLines όσο και η ανάλυση πεπερασμένων στοιχείων εετάστηκαν ξεχωριστά αφού αποτελούν τις δύο συνιστώσες της ισογεωμετρικής μεθόδου. Τα θέματα που εξετάστηκαν είναι οι T-SPLines και οι ιδιότητές τους, οι τεχνικές πύκνωσης του δικτύου , η μόρφωση του μητρώου στιβαρότητας, η επεξεργασία των αποτελεσμάτων της ανάλυσης (πεδίο μετατοπίσεων, τάσεων και παραμορφώσεων) και εφαρμογές 2Δ για τη διερεύνηση διαφόρων φορέων.The scope of this thesis if the investigation of static isogeometric analysis unsing a new type of shape functions T-SPLines. T-SPLines and finite elements have been examined separately, as the two components of the isogeometric method. The topics considered are T-SPLine formulation and properties, refinement techniques, stiffness matrix formulation , result post-processing (displacement, stress and strain field) and linear 2D applications investigating models of various representations.Δημήτριος Γ. Τσαπέτη

    Dynamic Multivariate Simplex Splines For Volume Representation And Modeling

    Get PDF
    Volume representation and modeling of heterogeneous objects acquired from real world are very challenging research tasks and playing fundamental roles in many potential applications, e.g., volume reconstruction, volume simulation and volume registration. In order to accurately and efficiently represent and model the real-world objects, this dissertation proposes an integrated computational framework based on dynamic multivariate simplex splines (DMSS) that can greatly improve the accuracy and efficacy of modeling and simulation of heterogenous objects. The framework can not only reconstruct with high accuracy geometric, material, and other quantities associated with heterogeneous real-world models, but also simulate the complicated dynamics precisely by tightly coupling these physical properties into simulation. The integration of geometric modeling and material modeling is the key to the success of representation and modeling of real-world objects. The proposed framework has been successfully applied to multiple research areas, such as volume reconstruction and visualization, nonrigid volume registration, and physically based modeling and simulation

    Accelerating Reinforcement Learning by Composing Solutions of Automatically Identified Subtasks

    Full text link
    This paper discusses a system that accelerates reinforcement learning by using transfer from related tasks. Without such transfer, even if two tasks are very similar at some abstract level, an extensive re-learning effort is required. The system achieves much of its power by transferring parts of previously learned solutions rather than a single complete solution. The system exploits strong features in the multi-dimensional function produced by reinforcement learning in solving a particular task. These features are stable and easy to recognize early in the learning process. They generate a partitioning of the state space and thus the function. The partition is represented as a graph. This is used to index and compose functions stored in a case base to form a close approximation to the solution of the new task. Experiments demonstrate that function composition often produces more than an order of magnitude increase in learning rate compared to a basic reinforcement learning algorithm

    Parameter estimation of ODE's via nonparametric estimators

    Get PDF
    Ordinary differential equations (ODE's) are widespread models in physics, chemistry and biology. In particular, this mathematical formalism is used for describing the evolution of complex systems and it might consist of high-dimensional sets of coupled nonlinear differential equations. In this setting, we propose a general method for estimating the parameters indexing ODE's from times series. Our method is able to alleviate the computational difficulties encountered by the classical parametric methods. These difficulties are due to the implicit definition of the model. We propose the use of a nonparametric estimator of regression functions as a first-step in the construction of an M-estimator, and we show the consistency of the derived estimator under general conditions. In the case of spline estimators, we prove asymptotic normality, and that the rate of convergence is the usual n\sqrt{n}-rate for parametric estimators. Some perspectives of refinements of this new family of parametric estimators are given.Comment: Published in at http://dx.doi.org/10.1214/07-EJS132 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Recent Advances in Semiparametric Bayesian Function Estimation

    Get PDF
    Common nonparametric curve fitting methods such as spline smoothing, local polynomial regression and basis function approaches are now well developed and widely applied. More recently, Bayesian function estimation has become a useful supplementary or alternative tool for practical data analysis, mainly due to breakthroughs in computerintensive inference via Markov chain Monte Carlo simulation. This paper surveys recent developments in semiparametric Bayesian inference for generalized regression and outlines some directions in current research

    Representation and application of spline-based finite elements

    Get PDF
    Isogeometric analysis, as a generalization of the finite element method, employs spline methods to achieve the same representation for both geometric modeling and analysis purpose. Being one of possible tool in application to the isogeometric analysis, blending techniques provide strict locality and smoothness between elements. Motivated by these features, this thesis is devoted to the design and implementation of this alternative type of finite elements. This thesis combines topics in geometry, computer science and engineering. The research is mainly focused on the algorithmic aspects of the usage of the spline-based finite elements in the context of developing generalized methods for solving different model problems. The ability for conversion between different representations is significant for the modeling purpose. Methods for conversion between local and global representations are presented
    corecore