29 research outputs found

    BProVe: Tool support for business process verification

    Get PDF
    This demo introduces BProVe, a tool supporting automated verification of Business Process models. BProVe analysis is based on a formal operational semantics defined for the BPMN 2.0 modelling language, and is provided as a freely accessible service that uses open standard formats as input data. Furthermore a plug-in for the Eclipse platform has been developed making available a tool chain supporting users in modelling and visualising, in a friendly manner, the results of the verification. Finally we have conducted a validation through more than one thousand models, showing the effectiveness of our verification tool in practice

    Automatic Bridge between BPMN Models and UML Activity Diagrams based on Graph Transformation

    Get PDF
    Model Driven Engineering (MDE) provides available tools, concepts and languages to create and transform models. One of the most important successes of MDE is model transformation; it permits transforming models used by one community to equivalent models used by another one. Moreover, each community of developers has its own tools for verification, testing and test case generation. Hence, a developer of one community who moves to work with another community needs a transformation process from the second community to (his/her) own community and vice versa. Therefore, the target community can benefit from the expertise of the source one and the developers do not begin from zero.In this context, we propose in this paper an automatic transformation to create a bridge between the BPMN and UML communities. We propose an approach and a visual tool for the automatic transformation of BPMN models to UML Activity Diagrams (UML-AD). The proposed approach is based on Meta-Modeling and Graph Transformation, and uses the AToM3 tool. Indeed, we were inspired by the OMG meta-models of BPMN and UML-AD and implemented versions of both meta-models using AToM3. This last allows generating automatically a visual modeling tool for each proposed meta-model. Based on these two meta-models, we propose a graph grammar composed of sixty rules that perform the transformation process. The proposed approach is illustrated through three case studies

    A transformation-based approach to business process management in the cloud

    Get PDF
    Business Process Management (BPM) has gained a lot of popularity in the last two decades, since it allows organizations to manage and optimize their business processes. However, purchasing a BPM system can be an expensive investment for a company, since not only the software itself needs to be purchased, but also hardware is required on which the process engine should run, and personnel need to be hired or allocated for setting up and maintaining the hardware and the software. Cloud computing gives its users the opportunity of using computing resources in a pay-per-use manner, and perceiving these resources as unlimited. Therefore, the application of cloud computing technologies to BPM can be extremely beneficial specially for small and middle-size companies. Nevertheless, the fear of losing or exposing sensitive data by placing these data in the cloud is one of the biggest obstacles to the deployment of cloud-based solutions in organizations nowadays. In this paper we introduce a transformation-based approach that allows companies to control the parts of their business processes that should be allocated to their own premises and to the cloud, to avoid unwanted exposure of confidential data and to profit from the high performance of cloud environments. In our approach, the user annotates activities and data that should be placed in the cloud or on-premise, and an automated transformation generates the process fragments for cloud and on-premise deployment. The paper discusses the challenges of developing the transformation and presents a case study that demonstrates the applicability of the approach

    Quality of (Digital) Services in e-Government

    Get PDF
    Internet growth in the nineties supported government ambition to provide better services to citizens through the development of Information and Communication Technologies based solutions. Thanks to the Lisbon conference, which in 2000 covered and investigated this topic, e-government has been recognized as one of the major priorities in Public Administration innovation process. As a matter of\ud fact in the last 10 years the number of services provided to citizens through Information and Communication Technologies has increased rapidly. Nevertheless the increasing rate, the access and usage of digital services do not follow the same trend. Nowadays Public Administrations deliver many electronic services which\ud are seldom used by citizens. Different reasons contribute to the highlighted situation.\ud The main assumption of the thesis is that quality of e-government digital services strongly affects real access to services by citizens. According to the complexity of quality in e-government, one of the main challenges was to define a suitable quality model. To reach such aim, domain-dependent characteristics on the services delivery have been investigated. The defined model refers to citizen,\ud technology and service related quality characteristics. Correspondingly a suitable way to represent, assess, and continuously improve services quality according to\ud such domain requirements has been introduced.\ud Concerning the service related quality aspects a methodology and a tool permitting to formally and automatically assess the quality of a designed service with\ud respect to the quality model has been defined. Starting from an user friendly notation, both for service and quality requirements, the proposed methodology has\ud been implemented as an user friendly tool supported by a mapping from user friendly notations to formal language. The tool allows to verify formally via model checking, if the given service satisfies one by one the quality requirements addressed by the quality model.\ud Additionally in some case an unique view on e-government service quality is quite useful. A mathematical model provides a single value for quality starting from the assessment of all the requirements defined in the quality model. It relies on the following activities: homogeneity, interaction and grouping.\ud A set of experiments has been performed in order to validate the goodness of the work. Services already implemented in a local Public Administration has\ud been considered. Literature review and domain experts knowledge were the main drivers of this work. It proofs the goodness of the quality model, the application of formal techniques in the complex field of study such as e-government and the quality aggregation via the mathematical model.\ud This thesis introduces advance research in e-government by providing the contributions that quality oriented service delivery in Public Administration promotes services used by the citizens. Further applications of the proposed approaches could be investigated in the areas of practical benchmarking and Service Level Agreement specification

    Multi-amalgamation of rules with application conditions in M-adhesive categories

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Amalgamation is a well-known concept for graph transformations that is used to model synchronised parallelism of rules with shared subrules and corresponding transformations. This concept is especially important for an adequate formalisation of the operational semantics of statecharts and other visual modelling languages, where typed attributed graphs are used for multiple rules with nested application conditions. However, the theory of amalgamation for the double-pushout approach has so far only been developed on a set-theoretical basis for pairs of standard graph rules without any application conditions. For this reason, in the current paper we present the theory of amalgamation for M-adhesive categories, which form a slightly more general framework than (weak) adhesive HLR categories, for a bundle of rules with (nested) application conditions. The two main results are the Complement Rule Theorem, which shows how to construct a minimal complement rule for each subrule, and the Multi-Amalgamation Theorem, which generalises the well-known Parallelism and Amalgamation Theorems to the case of multiple synchronised parallelism. In order to apply the largest amalgamated rule, we use maximal matchings, which are computed according to the actual instance graph. The constructions are illustrated by a small but meaningful running example, while a more complex case study concerning the firing semantics of Petri nets is presented as an introductory example and to provide motivation

    Multi-amalgamation of rules with application conditions in M-adhesive categories

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Amalgamation is a well-known concept for graph transformations that is used to model synchronised parallelism of rules with shared subrules and corresponding transformations. This concept is especially important for an adequate formalisation of the operational semantics of statecharts and other visual modelling languages, where typed attributed graphs are used for multiple rules with nested application conditions. However, the theory of amalgamation for the double-pushout approach has so far only been developed on a set-theoretical basis for pairs of standard graph rules without any application conditions. For this reason, in the current paper we present the theory of amalgamation for M-adhesive categories, which form a slightly more general framework than (weak) adhesive HLR categories, for a bundle of rules with (nested) application conditions. The two main results are the Complement Rule Theorem, which shows how to construct a minimal complement rule for each subrule, and the Multi-Amalgamation Theorem, which generalises the well-known Parallelism and Amalgamation Theorems to the case of multiple synchronised parallelism. In order to apply the largest amalgamated rule, we use maximal matchings, which are computed according to the actual instance graph. The constructions are illustrated by a small but meaningful running example, while a more complex case study concerning the firing semantics of Petri nets is presented as an introductory example and to provide motivation
    corecore