2,734 research outputs found

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes con°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 di®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales

    Applying Model Driven Engineering Techniques and Tools to the Planets Game Learning Scenario

    Get PDF
    24 pagesInternational audienceCPM (Cooperative Problem-Based learning Metamodel) is a visual language for the instructional design of Problem-Based Learning (PBL) situations. This language is a UML profile implemented on top of the Objecteering UML Case tool. In this article, we first present the way we used CPM language to bring about the pedagogical transposition of the planets game learning scenario. Then, we propose some related works conducted to improve CPM usability: on the one hand, we outline a MOF solution and an Eclipse GMF solution instead of the UML profile approach. On the other hand, we propose some explanations about transforming CPM models into LMS compliant data, and tool functionality

    A model driven approach to analysis and synthesis of sequence diagrams

    Get PDF
    Software design is a vital phase in a software development life cycle as it creates a blueprint for the implementation of the software. It is crucial that software designs are error-free since any unresolved design-errors could lead to costly implementation errors. To minimize these errors, the software community adopted the concept of modelling from various other engineering disciplines. Modelling provides a platform to create and share abstract or conceptual representations of the software system – leading to various modelling languages, among them Unified Modelling Language (UML) and Petri Nets. While Petri Nets strong mathematical capability allows various formal analyses to be performed on the models, UMLs user-friendly nature presented a more appealing platform for system designers. Using Multi Paradigm Modelling, this thesis presents an approach where system designers may have the best of both worlds; SD2PN, a model transformation that maps UML Sequence Diagrams into Petri Nets allows system designers to perform modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to be adopted into Sequence Diagram as a method of putting-together different Sequence Diagrams based on a set of techniques and algorithms

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii

    A Model Driven Approach to Model Transformations

    Get PDF
    The OMG's Model Driven Architecture (MDA) initiative has been the focus of much attention in both academia and industry, due to its promise of more rapid and consistent software development through the increased use of models. In order for MDA to reach its full potential, the ability to manipulate and transform models { most obviously from the Platform Independent Model (PIM) to the Platform Specific Models (PSM) { is vital. Recognizing this need, the OMG issued a Request For Proposals (RFP) largely concerned with finding a suitable mechanism for trans- forming models. This paper outlines the relevant background material, summarizes the approach taken by the QVT-Partners (to whom the authors belong), presents a non-trivial example using the QVT-Partners approach, and finally sketches out what the future holds for model transformations

    Specification of requirements models

    Get PDF
    The main aim of this chapter is to present and discuss a set of modeling and specification techniques, in what concerns their ontology and support in the requirements representation of computer-based systems. A systematic classification of meta-models, also called models of computation, is presented. This topic is highly relevant since it supports the definition of sound specification methodologies in relation to the semantic definition of the modeling views to adopt for a given system. The usage and applicability of Unified Modeling Language (UML) diagrams is also related to their corresponding meta-models. A set of desirable characteristics for the specification methodologies is presented and justified to allow system designers and requirements engineers to more consciously define or choose a particular specification methodology. A heuristic-based approach to support the transformation of user into system requirements is suggested, with some graphical examples in UML notation.(undefined

    Toward a decision support system for the clinical pathways assessment

    Get PDF
    This paper presents a decision support system to be used in hospital management taskswhich is based on the clinical pathways. We propose a very simple graphical modeling lan-guage based on a small number of primitive elements through which the medical doctorscould introduce a clinical pathway for a specific disease. Three essential aspects relatedto a clinical pathway can be specified in this language: (1) patient flow; (2) resource uti-lization; and (3) information interchange. This high-level language is a domain specificmodeling language calledHealthcare System Specification (HSS), and it is defined as anUnified Modeling Language (UML) profile. A model to model transformation is also pro-posed in order to obtain, from the pathways HSS specification, a Stochastic Well-formedNet (SWN) model that enables a formal analysis of the modeled system and, if needed, toapply synthesis methods enforcing specified requirements. The transformation is based onthe application of local rules. The clinical pathway of hip fracture from the “Lozano Blesa”University hospital in Zaragoza is taken as an example
    corecore