27 research outputs found

    Distributed Video Coding: Iterative Improvements

    Get PDF

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Multiple LDPC decoding for distributed source coding and video coding

    Get PDF
    Distributed source coding (DSC) is a coding paradigm for systems which fully or partly exploit the source statistics at the decoder to reduce the computational burden at the encoder. Distributed video coding (DVC) is one example. This paper considers the use of Low Density Parity Check Accumulate (LDPCA) codes in a DSC scheme with feed-back. To improve the LDPC coding performance in the context of DSC and DVC, while retaining short encoder blocks, this paper proposes multiple parallel LDPC decoding. The proposed scheme passes soft information between decoders to enhance performance. Experimental results on DVC show that the LDPCA perfomance implies a loss compared to the conditional entropy, but also that the proposed scheme reduces the DVC bit rate up to 3.9 % and improves the rate-distortion (RD) performance of a Transform Domain Wyner-Ziv (TDWZ) video codec. Index Terms — Wyner-Ziv video coding, multiple decoders, bitplane correlation 1

    Distributed Video Coding for Resource Critical Applocations

    Get PDF

    Distributed video coding with multiple side information

    Get PDF

    Side information exploitation, quality control and low complexity implementation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a new video coding methodology that shifts the highly complex motion search components from the encoder to the decoder, such a video coder would have a great advantage in encoding speed and it is still able to achieve similar rate-distortion performance as the conventional coding solutions. Applications include wireless video sensor networks, mobile video cameras and wireless video surveillance, etc. Although many progresses have been made in DVC over the past ten years, there is still a gap in RD performance between conventional video coding solutions and DVC. The latest development of DVC is still far from standardization and practical use. The key problems remain in the areas such as accurate and efficient side information generation and refinement, quality control between Wyner-Ziv frames and key frames, correlation noise modelling and decoder complexity, etc. Under this context, this thesis proposes solutions to improve the state-of-the-art side information refinement schemes, enable consistent quality control over decoded frames during coding process and implement highly efficient DVC codec. This thesis investigates the impact of reference frames on side information generation and reveals that reference frames have the potential to be better side information than the extensively used interpolated frames. Based on this investigation, we also propose a motion range prediction (MRP) method to exploit reference frames and precisely guide the statistical motion learning process. Extensive simulation results show that choosing reference frames as SI performs competitively, and sometimes even better than interpolated frames. Furthermore, the proposed MRP method is shown to significantly reduce the decoding complexity without degrading any RD performance. To minimize the block artifacts and achieve consistent improvement in both subjective and objective quality of side information, we propose a novel side information synthesis framework working on pixel granularity. We synthesize the SI at pixel level to minimize the block artifacts and adaptively change the correlation noise model according to the new SI. Furthermore, we have fully implemented a state-of-the-art DVC decoder with the proposed framework using serial and parallel processing technologies to identify bottlenecks and areas to further reduce the decoding complexity, which is another major challenge for future practical DVC system deployments. The performance is evaluated based on the latest transform domain DVC codec and compared with different standard codecs. Extensive experimental results show substantial and consistent rate-distortion gains over standard video codecs and significant speedup over serial implementation. In order to bring the state-of-the-art DVC one step closer to practical use, we address the problem of distortion variation introduced by typical rate control algorithms, especially in a variable bit rate environment. Simulation results show that the proposed quality control algorithm is capable to meet user defined target distortion and maintain a rather small variation for sequence with slow motion and performs similar to fixed quantization for fast motion sequence at the cost of some RD performance. Finally, we propose the first implementation of a distributed video encoder on a Texas Instruments TMS320DM6437 digital signal processor. The WZ encoder is efficiently implemented, using rate adaptive low-density-parity-check accumulative (LDPCA) codes, exploiting the hardware features and optimization techniques to improve the overall performance. Implementation results show that the WZ encoder is able to encode at 134M instruction cycles per QCIF frame on a TMS320DM6437 DSP running at 700MHz. This results in encoder speed 29 times faster than non-optimized encoder implementation. We also implemented a highly efficient DVC decoder using both serial and parallel technology based on a PC-HPC (high performance cluster) architecture, where the encoder is running in a general purpose PC and the decoder is running in a multicore HPC. The experimental results show that the parallelized decoder can achieve about 10 times speedup under various bit-rates and GOP sizes compared to the serial implementation and significant RD gains with regards to the state-of-the-art DISCOVER codec

    Adaptive mode decision with residual motion compensation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a coding paradigm that entails low complexity encoding by exploiting the source statistics at the decoder. To improve the DVC coding efficiency, this paper presents a novel adaptive technique for mode decision to control and take advantage of skip mode and intra mode in DVC initially proposed by Luong et al. in 2013. The adaptive mode decision (AMD) is not only based on quality of key frames but also the rate of Wyner-Ziv (WZ) frames. To improve noise distribution estimation for a more accurate mode decision, a residual motion compensation is proposed to estimate a current noise residue based on a previously decoded frame. The experimental results, integrating AMD in two efficient DVC codecs, show that the proposed AMD DVC significantly improves the rate distortion performance without increasing the encoding complexity. For a GOP size of 2 on the set of six test sequences, the average (Bjontegaard) bitrate saving of the proposed codec is 35.5. on WZ frames compared with the DISCOVER codec. This saving is mainly achieved by AMD

    Distributed Video Coding for Multiview and Video-plus-depth Coding

    Get PDF

    Side-information generation for temporally and spatially scalablewyner-ziv codecs

    Get PDF
    The distributed video coding paradigmenables video codecs to operate with reversed complexity, in which the complexity is shifted from the encoder toward the decoder. Its performance is heavily dependent on the quality of the side information generated by motio estimation at the decoder. We compare the rate-distortion performance of different side-information estimators, for both temporally and spatially scalableWyner-Ziv codecs. For the temporally scalable codec we compared an established method with a new algorithm that uses a linear-motion model to produce side-information. As a continuation of previous works, in this paper, we propose to use a super-resolution method to upsample the nonkey frame, for the spatial scalable codec, using the key frames as reference.We verify the performance of the spatial scalableWZcoding using the state-of-the-art video coding standard H.264/AVC
    corecore