445 research outputs found

    Formalizing Termination Proofs under Polynomial Quasi-interpretations

    Full text link
    Usual termination proofs for a functional program require to check all the possible reduction paths. Due to an exponential gap between the height and size of such the reduction tree, no naive formalization of termination proofs yields a connection to the polynomial complexity of the given program. We solve this problem employing the notion of minimal function graph, a set of pairs of a term and its normal form, which is defined as the least fixed point of a monotone operator. We show that termination proofs for programs reducing under lexicographic path orders (LPOs for short) and polynomially quasi-interpretable can be optimally performed in a weak fragment of Peano arithmetic. This yields an alternative proof of the fact that every function computed by an LPO-terminating, polynomially quasi-interpretable program is computable in polynomial space. The formalization is indeed optimal since every polynomial-space computable function can be computed by such a program. The crucial observation is that inductive definitions of minimal function graphs under LPO-terminating programs can be approximated with transfinite induction along LPOs.Comment: In Proceedings FICS 2015, arXiv:1509.0282

    Rewrite, rewrite, rewrite, rewrite, rewrite, 


    Get PDF
    We study properties of rewrite systems that are not necessarily terminating, but allow instead for transfinite derivations that have a limit. In particular, we give conditions for the existence of a limit and for its uniqueness and relate the operational and algebraic semantics of infinitary theories. We also consider sufficient completeness of hierarchical systems

    Syntactic definitions of undefined: On defining the undefined

    Get PDF
    In the lambda-calculus, there is a standard notion of what terms should be considered to be “undefined”: the unsolvable terms. There are various equivalent characterisations of this property of terms. We attempt to find a similar notion for orthogonal term rewrite systems. We find that in general the properties of terms analogous to the various characterisations of solvability differ. We give two axioms that a notion of undefinedness should satisfy, and explore some of their consequences. The axioms lead to a concept analogous to the Böhm trees of the λ-calculus. Each term has a unique B5hm tree, and the set of such trees forms a domain which provides a denotational semantics for the rewrite system. We consider several particular notions of undefinedness satisfying the axioms, and compare them

    Reinterpreting Compression in Infinitary Rewriting

    Get PDF
    Departing from a computational interpretation of compression in infinitary rewriting, we view compression as a degenerate case of standardisation. The change in perspective comes about via two observations: (a) no compression property can be recovered for non-left-linear systems and (b) some standardisation procedures, as a ‘side-effect’, yield compressed reductions

    Rewriting Transfinite Terms

    Get PDF
    We define rewriting over terms with positions of transfinite length

    A general conservative extension theorem in process algebras with inequalities

    Get PDF
    We prove a general conservative extension theorem for transition system based process theories with easy-to-check and reasonable conditions. The core of this result is another general theorem which gives sufficient conditions for a system of operational rules and an extension of it in order to ensure conservativity, that is, provable transitions from an original term in the extension are the same as in the original system. As a simple corollary of the conservative extension theorem we prove a completeness theorem. We also prove a general theorem giving sufficient conditions to reduce the question of ground confluence modulo some equations for a large term rewriting system associated with an equational process theory to a small term rewriting system under the condition that the large system is a conservative extension of the small one. We provide many applications to show that our results are useful. The applications include (but are not limited to) various real and discrete time settings in ACP, ATP, and CCS and the notions projection, renaming, stage operator, priority, recursion, the silent step, autonomous actions, the empty process, divergence, etc

    Infinitary Combinatory Reduction Systems: Confluence

    Get PDF
    We study confluence in the setting of higher-order infinitary rewriting, in particular for infinitary Combinatory Reduction Systems (iCRSs). We prove that fully-extended, orthogonal iCRSs are confluent modulo identification of hypercollapsing subterms. As a corollary, we obtain that fully-extended, orthogonal iCRSs have the normal form property and the unique normal form property (with respect to reduction). We also show that, unlike the case in first-order infinitary rewriting, almost non-collapsing iCRSs are not necessarily confluent
    • 

    corecore