2,043 research outputs found

    Underwater Fish Detection with Weak Multi-Domain Supervision

    Full text link
    Given a sufficiently large training dataset, it is relatively easy to train a modern convolution neural network (CNN) as a required image classifier. However, for the task of fish classification and/or fish detection, if a CNN was trained to detect or classify particular fish species in particular background habitats, the same CNN exhibits much lower accuracy when applied to new/unseen fish species and/or fish habitats. Therefore, in practice, the CNN needs to be continuously fine-tuned to improve its classification accuracy to handle new project-specific fish species or habitats. In this work we present a labelling-efficient method of training a CNN-based fish-detector (the Xception CNN was used as the base) on relatively small numbers (4,000) of project-domain underwater fish/no-fish images from 20 different habitats. Additionally, 17,000 of known negative (that is, missing fish) general-domain (VOC2012) above-water images were used. Two publicly available fish-domain datasets supplied additional 27,000 of above-water and underwater positive/fish images. By using this multi-domain collection of images, the trained Xception-based binary (fish/not-fish) classifier achieved 0.17% false-positives and 0.61% false-negatives on the project's 20,000 negative and 16,000 positive holdout test images, respectively. The area under the ROC curve (AUC) was 99.94%.Comment: Published in the 2019 International Joint Conference on Neural Networks (IJCNN-2019), Budapest, Hungary, July 14-19, 2019, https://www.ijcnn.org/ , https://ieeexplore.ieee.org/document/885190

    Bridging the Gap between Laboratory and Field Experiments in American Eel Detection Using Transfer Learning and Convolutional Neural Network

    Get PDF
    An automatic system that utilizes data analytics and machine learning to identify adult American eel in data obtained by imaging sonars is created in this study. Wavelet transform has been applied to de-noise the ARIS sonar data and a convolutional neural network model has been built to classify eels and non-eel objects. Because of the unbalanced amounts of data in laboratory and field experiments, a transfer learning strategy is implemented to fine-tune the convolutional neural network model so that it performs well for both the laboratory and field data. The proposed system can provide important information to develop mitigation strategies for safe passage of out-migrating eels at hydroelectric facilities

    Deep learning for internet of underwater things and ocean data analytics

    Get PDF
    The Internet of Underwater Things (IoUT) is an emerging technological ecosystem developed for connecting objects in maritime and underwater environments. IoUT technologies are empowered by an extreme number of deployed sensors and actuators. In this thesis, multiple IoUT sensory data are augmented with machine intelligence for forecasting purposes

    Distributed Deep Learning in the Cloud and Energy-efficient Real-time Image Processing at the Edge for Fish Segmentation in Underwater Videos Segmentation in Underwater Videos

    Get PDF
    Using big marine data to train deep learning models is not efficient, or sometimes even possible, on local computers. In this paper, we show how distributed learning in the cloud can help more efficiently process big data and train more accurate deep learning models. In addition, marine big data is usually communicated over wired networks, which if possible to deploy in the first place, are costly to maintain. Therefore, wireless communications dominantly conducted by acoustic waves in underwater sensor networks, may be considered. However, wireless communication is not feasible for big marine data due to the narrow frequency bandwidth of acoustic waves and the ambient noise. To address this problem, we propose an optimized deep learning design for low-energy and real-time image processing at the underwater edge. This leads to trading the need to transmit the large image data, for transmitting only the low-volume results that can be sent over wireless sensor networks. To demonstrate the benefits of our approaches in a real-world application, we perform fish segmentation in underwater videos and draw comparisons against conventional techniques. We show that, when underwater captured images are processed at the collection edge, 4 times speedup can be achieved compared to using a landside server. Furthermore, we demonstrate that deploying a compressed DNN at the edge can save 60% of power compared to a full DNN model. These results promise improved applications of affordable deep learning in underwater exploration, monitoring, navigation, tracking, disaster prevention, and scientific data collection projects

    LifeCLEF 2016: Multimedia Life Species Identification Challenges

    Get PDF
    International audienceUsing multimedia identification tools is considered as one of the most promising solutions to help bridge the taxonomic gap and build accurate knowledge of the identity, the geographic distribution and the evolution of living species. Large and structured communities of nature observers (e.g., iSpot, Xeno-canto, Tela Botanica, etc.) as well as big monitoring equipment have actually started to produce outstanding collections of multimedia records. Unfortunately, the performance of the state-of-the-art analysis techniques on such data is still not well understood and is far from reaching real world requirements. The LifeCLEF lab proposes to evaluate these challenges around 3 tasks related to multimedia information retrieval and fine-grained classification problems in 3 domains. Each task is based on large volumes of real-world data and the measured challenges are defined in collaboration with biologists and environmental stakeholders to reflect realistic usage scenarios. For each task, we report the methodology, the data sets as well as the results and the main outcom

    Novel deep learning architectures for marine and aquaculture applications

    Get PDF
    Alzayat Saleh's research was in the area of artificial intelligence and machine learning to autonomously recognise fish and their morphological features from digital images. Here he created new deep learning architectures that solved various computer vision problems specific to the marine and aquaculture context. He found that these techniques can facilitate aquaculture management and environmental protection. Fisheries and conservation agencies can use his results for better monitoring strategies and sustainable fishing practices

    Developing deep learning methods for aquaculture applications

    Get PDF
    Alzayat Saleh developed a computer vision framework that can aid aquaculture experts in analyzing fish habitats. In particular, he developed a labelling efficient method of training a CNN-based fish-detector and also developed a model that estimates the fish weight directly from its image

    Automatic sorting of Dwarf Minke Whale underwater images

    Get PDF
    Abstract: Apredictableaggregationofdwarfminkewhales(Balaenopteraacutorostratasubspecies) occurs annually in the Australian waters of the northern Great Barrier Reef in June–July, which has been the subject of a long-term photo-identification study. Researchers from the Minke Whale Project (MWP) at James Cook University collect large volumes of underwater digital imagery each season (e.g., 1.8TB in 2018), much of which is contributed by citizen scientists. Manual processing and analysis of this quantity of data had become infeasible, and Convolutional Neural Networks (CNNs) offered a potential solution. Our study sought to design and train a CNN that could detect whales from video footage in complex near-surface underwater surroundings and differentiate the whales from people, boats and recreational gear. We modified known classification CNNs to localise whales in video frames and digital still images. The required high classification accuracy was achieved by discovering an effective negative-labelling training technique. This resulted in a less than 1% false-positive classification rate and below 0.1% false-negative rate. The final operation-version CNN-pipeline processed all videos (with the interval of 10 frames) in approximately four days (running on two GPUs) delivering 1.95 million sorted images
    corecore