553 research outputs found

    Web-Scale Training for Face Identification

    Full text link
    Scaling machine learning methods to very large datasets has attracted considerable attention in recent years, thanks to easy access to ubiquitous sensing and data from the web. We study face recognition and show that three distinct properties have surprising effects on the transferability of deep convolutional networks (CNN): (1) The bottleneck of the network serves as an important transfer learning regularizer, and (2) in contrast to the common wisdom, performance saturation may exist in CNN's (as the number of training samples grows); we propose a solution for alleviating this by replacing the naive random subsampling of the training set with a bootstrapping process. Moreover, (3) we find a link between the representation norm and the ability to discriminate in a target domain, which sheds lights on how such networks represent faces. Based on these discoveries, we are able to improve face recognition accuracy on the widely used LFW benchmark, both in the verification (1:1) and identification (1:N) protocols, and directly compare, for the first time, with the state of the art Commercially-Off-The-Shelf system and show a sizable leap in performance

    Efficient Deep Learning in Network Compression and Acceleration

    Get PDF
    While deep learning delivers state-of-the-art accuracy on many artificial intelligence tasks, it comes at the cost of high computational complexity due to large parameters. It is important to design or develop efficient methods to support deep learning toward enabling its scalable deployment, particularly for embedded devices such as mobile, Internet of things (IOT), and drones. In this chapter, I will present a comprehensive survey of several advanced approaches for efficient deep learning in network compression and acceleration. I will describe the central ideas behind each approach and explore the similarities and differences between different methods. Finally, I will present some future directions in this field
    • …
    corecore