4,650 research outputs found

    Design issues for agent-based resource locator systems

    Get PDF
    While knowledge is viewed by many as an asset, it is often difficult to locate particularitems within a large electronic corpus. This paper presents an agent based framework for the location of resources to resolve a specific query, and considers the associated design issue. Aspects of the work presented complements current research into both expertise finders and recommender systems. The essential issues for the proposed design are scalability, together ith the ability to learn and adapt to changing resources. As knowledge is often implicit within electronic resources, and therefore difficult to locate, we have proposed the use of ontologies, to extract the semantics and infer meaning to obtain the results required. We explore the use of communities of practice, applying ontology-based networks, and e-mail message exchanges to aid the resource discovery process

    Semantic reasoning on the edge of internet of things

    Get PDF
    Abstract. The Internet of Things (IoT) is a paradigm where physical objects are connected with each other with identifying, sensing, networking and processing capabilities over the Internet. Millions of new devices will be added into IoT network thus generating huge amount of data. How to represent, store, interconnect, search, and organize information generated by IoT devices become a challenge. Semantic technologies could play an important role by encoding meaning into data to enable a computer system to possess knowledge and reasoning. The vast amount of devices and data are also challenges. Edge Computing reduces both network latency and resource consumptions by deploying services and distributing computing tasks from the core network to the edge. We recognize four challenges from IoT systems. First the centralized server may generate long latency because of physical distances. Second concern is that the resource-constrained IoT devices have limited computing ability in processing heavy tasks. Third, the data generated by heterogeneous devices can hardly be understood and utilized by other devices or systems. Our research focuses on these challenges and provide a solution based on Edge computing and semantic technologies. We utilize Edge computing and semantic reasoning into IoT. Edge computing distributes tasks to the reasoning devices, which we call the Edge nodes. They are close to the terminal devices and provide services. The newly added resources could balance the workload of the systems and improve the computing capability. We annotate meaning into the data with Resource Description Framework thus providing an approach for heterogeneous machines to understand and utilize the data. We use semantic reasoning as a general purpose intelligent processing method. The thesis work focuses on studying semantic reasoning performance in IoT system with Edge computing paradigm. We develop an Edge based IoT system with semantic technologies. The system deploys semantic reasoning services on Edge nodes. Based on IoT system, we design five experiments to evaluate the performance of the integrated IoT system. We demonstrate how could the Edge computing paradigm facilitate IoT in terms of data transforming, semantic reasoning and service experience. We analyze how to improve the performance by properly distributing the task for Cloud and Edge nodes. The thesis work result shows that the Edge computing could improve the performance of the semantic reasoning in IoT

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Neogeography: The Challenge of Channelling Large and Ill-Behaved Data Streams

    Get PDF
    Neogeography is the combination of user generated data and experiences with mapping technologies. In this article we present a research project to extract valuable structured information with a geographic component from unstructured user generated text in wikis, forums, or SMSes. The extracted information should be integrated together to form a collective knowledge about certain domain. This structured information can be used further to help users from the same domain who want to get information using simple question answering system. The project intends to help workers communities in developing countries to share their knowledge, providing a simple and cheap way to contribute and get benefit using the available communication technology

    Business integration models in the context of web services.

    Get PDF
    E-commerce development and applications have been bringing the Internet to business and marketing and reforming our current business styles and processes. The rapid development of the Web, in particular, the introduction of the semantic web and web service technologies, enables business processes, modeling and management to enter an entirely new stage. Traditional web based business data and transactions can now be analyzed, extracted and modeled to discover new business rules and to form new business strategies, let alone mining the business data in order to classify customers or products. In this paper, we investigate and analyze the business integration models in the context of web services using a micro-payment system because a micro-payment system is considered to be a service intensive activity, where many payment tasks involve different forms of services, such as payment method selection for buyers, security support software, product price comparison, etc. We will use the micro-payment case to discuss and illustrate how the web services approaches support and transform the business process and integration model.

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    Desing and Validation of a Light Inference System to Support Embedded Context Reasoning

    Full text link
    Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications—it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ‘Activity Monitor’ has been designed and implemented: a personal health-persuasive application that provides feedback on the user’s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user’s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.

    Information for handover management in heterogeneous networks: data representation,languages and integrated platforms

    Get PDF
    Due to the convergence of radio, television, telephony and Internet areas, the mobility of users, the ubiquity of services, and the development of new technologies to unify access provision, the interaction between providers and users will be required for access on demand in heterogeneous environments. This interaction should allow, in addition to seamless handovers, the negotiation based on technical requirements and user's desires during handover decision processes. The central part of the information being exchanged between the access provider's attachment points and user's devices should be a uniform and common structure that models the handover management information, in terms of what the information represents their semantic meanings and relationships. This work presents a set of ontologies, for this purpose, employed during handover decision processes, in integrated networking platforms for access on demand. A case study is presented, which demonstrates how a service could be integrated in two different platforms for such environment
    • 

    corecore