18,201 research outputs found

    Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU

    Full text link
    Machine learning approaches have been effective in predicting adverse outcomes in different clinical settings. These models are often developed and evaluated on datasets with heterogeneous patient populations. However, good predictive performance on the aggregate population does not imply good performance for specific groups. In this work, we present a two-step framework to 1) learn relevant patient subgroups, and 2) predict an outcome for separate patient populations in a multi-task framework, where each population is a separate task. We demonstrate how to discover relevant groups in an unsupervised way with a sequence-to-sequence autoencoder. We show that using these groups in a multi-task framework leads to better predictive performance of in-hospital mortality both across groups and overall. We also highlight the need for more granular evaluation of performance when dealing with heterogeneous populations.Comment: KDD 201

    Potential and limitations of plant virus epidemiology: lessons from the Potato virus Y pathosystem

    Get PDF
    Abstract Plant virus epidemiology provides powerful tools to investigate key factors that contribute to virus epidemics in agricultural crops. When successful, epidemiological approaches help to guide decisions regarding plant protection strategies. A recent example is epidemiological research on Potato virus Y (PVY) in Finnish seed potato production; this study led to the dentification of the main PVY vector species and helped to determine the timing of virus transmission. However, pathosystems rarely allow research to produce such clear-cut results. In fact, the notorious complexity of plant virus pathosystems, with multiple interactions between virus, vector, plant and environment, makes them often impenetrable even for advanced epidemiological models. This dynamic complexity questions the universal validity of employing epidemiological models that attempt to single out key factors in plant virus epidemics. Therefore, a complementary approach is needed that acknowledges the partly indeterministic nature of complex and evolving pathosystems. Such an approach is the use of diversity, imploying functionally complementary elements that can jointly buffer against environmental changes. I argue that for a wider range of plant production problems, the strategy of combining mechanistic and diversity-based approaches will provide potent and sustainable solutions. In addition, to translate insights from plant virus epidemiology into practice, improvements need to be made in knowledge transfer, both within the scientific community and between researchers and practitioners. Finally, moving towards more appropriate virus control strategies is only possible if economic interests of all stakeholders are in line with changing current practices

    Does stroke location predict walk speed response to gait rehabilitation?

    Get PDF
    Objectives Recovery of independent ambulation after stroke is a major goal. However, which rehabilitation regimen best benefits each individual is unknown and decisions are currently made on a subjective basis. Predictors of response to specific therapies would guide the type of therapy most appropriate for each patient. Although lesion topography is a strong predictor of upper limb response, walking involves more distributed functions. Earlier studies that assessed the cortico-spinal tract (CST) were negative, suggesting other structures may be important. Experimental Design: The relationship between lesion topography and response of walking speed to standard rehabilitation was assessed in 50 adult-onset patients using both volumetric measurement of CST lesion load and voxel-based lesion–symptom mapping (VLSM) to assess non-CST structures. Two functional mobility scales, the functional ambulation category (FAC) and the modified rivermead mobility index (MRMI) were also administered. Performance measures were obtained both at entry into the study (3–42 days post-stroke) and at the end of a 6-week course of therapy. Baseline score, age, time since stroke onset and white matter hyperintensities score were included as nuisance covariates in regression models. Principal Observations: CST damage independently predicted response to therapy for FAC and MRMI, but not for walk speed. However, using VLSM the latter was predicted by damage to the putamen, insula, external capsule and neighbouring white matter. Conclusions Walk speed response to rehabilitation was affected by damage involving the putamen and neighbouring structures but not the CST, while the latter had modest but significant impact on everyday functions of general mobility and gait

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Self-supervised learning-based general laboratory progress pretrained model for cardiovascular event detection

    Full text link
    The inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism, and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the detection of specific cardiovascular event. GLP implemented a two-stage training approach, leveraging the information embedded within interpolated data and amplify the performance of SSL. After GLP pretraining, it is transferred for TVR detection. The proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority (p < 0.01) compared to prior GLP processing. Our study effectively engages in translational engineering by transferring patient progression of cardiovascular laboratory parameters from one patient group to another, transcending the limitations of data availability. The transferability of disease progression optimized the strategies of examinations and treatments, and improves patient prognosis while using commonly available laboratory parameters. The potential for expanding this approach to encompass other diseases holds great promise.Comment: published in IEEE Journal of Translational Engineering in Health & Medicin

    Global disease monitoring and forecasting with Wikipedia

    Full text link
    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data such as social media and search queries are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2r^2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.Comment: 27 pages; 4 figures; 4 tables. Version 2: Cite McIver & Brownstein and adjust novelty claims accordingly; revise title; various revisions for clarit
    • …
    corecore