152 research outputs found

    Cross-lingual Coreference Resolution of Pronouns

    Get PDF
    This work is, to our knowledge, a first attempt at a machine learning approach to cross-lingual coreference resolution, i.e. coreference resolution (CR) performed on a bitext. Focusing on CR of English pronouns, we leverage language differences and enrich the feature set of a standard monolingual CR system for English with features extracted from the Czech side of the bitext. Our work also includes a supervised pronoun aligner that outperforms a GIZA++ baseline in terms of both intrinsic evaluation and evaluation on CR. The final cross-lingual CR system has successfully outperformed both a monolingual CR and a cross-lingual projection system

    Linear mappings: semantic transfer from transformer models for cognate detection and coreference resolution

    Get PDF
    Includes bibliographical references.2022 Fall.Embeddings or vector representations of language and their properties are useful for understanding how Natural Language Processing technology works. The usefulness of embeddings, however, depends on how contextualized or information-rich such embeddings are. In this work, I apply a novel affine (linear) mapping technique first established in the field of computer vision to embeddings generated from large Transformer-based language models. In particular, I study its use in two challenging linguistic tasks: cross-lingual cognate detection and cross-document coreference resolution. Cognate detection for two Low-Resource Languages (LRL), Assamese and Bengali, is framed as a binary classification problem using semantic (embedding-based), articulatory, and phonetic features. Linear maps for this task are extrinsically evaluated on the extent of transfer of semantic information between monolingual as well as multi-lingual models including those specialized for low-resourced Indian languages. For cross-document coreference resolution, whole-document contextual representations are generated for event and entity mentions from cross- document language models like CDLM and other BERT-variants and then linearly mapped to form coreferring clusters based on their cosine similarities. I evaluate my results on gold output based on established coreference metrics like BCUB and MUC. My findings reveal that linearly transforming vectors from one model's embedding space to another carries certain semantic information with high fidelity thereby revealing the existence of a canonical embedding space and its geometric properties for language models. Interestingly, even for a much more challenging task like coreference resolution, linear maps are able to transfer semantic information between "lighter" models or less contextual models and "larger" models with near-equivalent performance or even improved results in some cases

    Coreference resolution for portuguese using parallel corpora word alignment

    Get PDF
    A ĂĄrea de Extração da Informação tem como objetivo essencial investigar mĂ©todos e tĂ©cnicas para transformar a informação nĂŁo estruturada presente em textos de lĂ­ngua natural em dados estruturados. Um importante passo deste processo Ă© a resolução de correferĂȘncia, tarefa que identifica diferentes sintagmas nominais que se referem a mesma entidade no discurso. A ĂĄrea de estudos sobre resolução de correferĂȘncia tem sido extensivamente pesquisada para a LĂ­ngua Inglesa (Ng, 2010) lista uma sĂ©rie de estudos da ĂĄrea, entretanto tem recebido menos atenção em outras lĂ­nguas. Isso se deve ao fato de que a grande maioria das abordagens utilizadas nessas pesquisas sĂŁo baseadas em aprendizado de mĂĄquina e, portanto, requerem uma extensa quantidade de dados anotados

    Investigating the role of linguistic knowledge in vision and language tasks

    Get PDF
    Artificial Intelligence (AI) has transformed the way we interact with technology e.g., chatbots, voice-based assistants, smart devices, and so on. One particular area that has gained tremendous attention and importance is learning through multimodal data sources within AI systems. By incorporating multimodal learning into AI systems, we can bridge the gap between human and machine communication, enabling more intuitive and natural interactions. Multimodal learning is the integration of multiple sensory modalities, such as text, images, speech, and gestures, to enable machines to understand and interpret humans and the world around us more comprehensively. In this thesis we develop strategies to exploit multimodal data (specifically text and images) along with linguistic knowledge, making multimodal systems more reliable and accurate for various vision and language tasks. In the first part of the thesis, we focus on developing AI systems that can understand the visual world around us and respond in a more natural and human-like manner. This task is popularly known as image captioning. Despite the significant progress in this task, the image captions generated by the models are extremely generic and template-like for visually similar images. We address this limitation and generate detailed and image-specific captions by exploiting prior and implicit linguistic knowledge, without the need for more labeled data or computational overhead. Unlike previous work, our proposed method generates captions that reflect the image in detail. To further allow AI models to better understand and interpret context, in the second part of the thesis we leverage information from multiple modalities to gather a more comprehensive understanding of the visual data by generating scene graphs. Unlike image captioning that provides a high-level interpretation of the scene, in this setting a key question is – how do different objects/entities in the scene interact with each other? Collecting large amounts of labeled data that can capture every possible interaction is very expensive and infeasible. Hence, we propose an efficient training strategy that generates complete and informative scene graphs from incomplete and missing labels using the knowledge of label informativeness from linguistics. In the third part of the thesis, we study the narrative descriptions of images generated from human speech i.e., natural language, to enable natural interaction between humans and machines. One fundamental and challenging problem when dealing with natural language is the task of coreference resolution. For example, in the sentence “John saw a dog. He petted it,” coreference resolution determines that “he” refers to “John” and “it” refers to the “dog.” While coreference resolution may seem straightforward to humans, it poses several significant challenges for AI systems. Without proper coreference resolution, models will struggle to derive the correct meaning and produce coherent outputs. To address this important and complex problem, we propose a novel benchmark dataset for multimodal coreference resolution to evaluate coreference resolution in text and narrative grounding in images. We also propose a weakly supervised method with rule-based linguistic knowledge to address multimodal coreference resolution without a large supervised training dataset. Finally, we address the limitations of the weakly supervised learning setup in multimodal coreference resolution by proposing a semi-supervised learning strategy. By using a small labeled and a large unlabeled dataset with robust self-supervised and pseudo-labeled loss functions, we achieve strong performance gains for coreference resolution and narrative grounding in a data-efficient way. Our work addresses important aspects in vision and language and paves the way for interesting future avenues. In the last part of the thesis, we discuss in more detail directions for the future that are important for advancing the field and unlocking its full potential. Hence, continued research is needed to push the boundaries of multimodal learning

    A New Perspective on Reusing Semantic Resources

    Get PDF
    Well trained linguists manage to capture semantic behavior of words in various annotated corpora. Using them as training data, semantic relations can be discovered by intelligent systems using supervised machine learning techniques. What if we have short deadlines and limited human and financial possibilities that prevent us from building such a valuable training corpus for our own language? If such a corpus already exists for any other language, we could make use of this treasure and reproduce it for the language we need. This paper proposes an import method, which transfers semantic annotation (which could be semantic roles, named entity, sentiments, etc.) from an annotated resource to another language, using comparable texts. The case of semantic role annotation transfer from English to Romanian is discussed

    Neural Graph Transfer Learning in Natural Language Processing Tasks

    Get PDF
    Natural language is essential in our daily lives as we rely on languages to communicate and exchange information. A fundamental goal for natural language processing (NLP) is to let the machine understand natural language to help or replace human experts to mine knowledge and complete tasks. Many NLP tasks deal with sequential data. For example, a sentence is considered as a sequence of works. Very recently, deep learning-based language models (i.e.,BERT \citep{devlin2018bert}) achieved significant improvement in many existing tasks, including text classification and natural language inference. However, not all tasks can be formulated using sequence models. Specifically, graph-structured data is also fundamental in NLP, including entity linking, entity classification, relation extraction, abstractive meaning representation, and knowledge graphs \citep{santoro2017simple,hamilton2017representation,kipf2016semi}. In this scenario, BERT-based pretrained models may not be suitable. Graph Convolutional Neural Network (GCN) \citep{kipf2016semi} is a deep neural network model designed for graphs. It has shown great potential in text classification, link prediction, question answering and so on. This dissertation presents novel graph models for NLP tasks, including text classification, prerequisite chain learning, and coreference resolution. We focus on different perspectives of graph convolutional network modeling: for text classification, a novel graph construction method is proposed which allows interpretability for the prediction; for prerequisite chain learning, we propose multiple aggregation functions that utilize neighbors for better information exchange; for coreference resolution, we study how graph pretraining can help when labeled data is limited. Moreover, an important branch is to apply pretrained language models for the mentioned tasks. So, this dissertation also focuses on the transfer learning method that generalizes pretrained models to other domains, including medical, cross-lingual, and web data. Finally, we propose a new task called unsupervised cross-domain prerequisite chain learning, and study novel graph-based methods to transfer knowledge over graphs

    Anaphora resolution for Arabic machine translation :a case study of nafs

    Get PDF
    PhD ThesisIn the age of the internet, email, and social media there is an increasing need for processing online information, for example, to support education and business. This has led to the rapid development of natural language processing technologies such as computational linguistics, information retrieval, and data mining. As a branch of computational linguistics, anaphora resolution has attracted much interest. This is reflected in the large number of papers on the topic published in journals such as Computational Linguistics. Mitkov (2002) and Ji et al. (2005) have argued that the overall quality of anaphora resolution systems remains low, despite practical advances in the area, and that major challenges include dealing with real-world knowledge and accurate parsing. This thesis investigates the following research question: can an algorithm be found for the resolution of the anaphor nafs in Arabic text which is accurate to at least 90%, scales linearly with text size, and requires a minimum of knowledge resources? A resolution algorithm intended to satisfy these criteria is proposed. Testing on a corpus of contemporary Arabic shows that it does indeed satisfy the criteria.Egyptian Government

    Resolving pronominal anaphora using commonsense knowledge

    Get PDF
    Coreference resolution is the task of resolving all expressions in a text that refer to the same entity. Such expressions are often used in writing and speech as shortcuts to avoid repetition. The most frequent form of coreference is the anaphor. To resolve anaphora not only grammatical and syntactical strategies are required, but also semantic approaches should be taken into consideration. This dissertation presents a framework for automatically resolving pronominal anaphora by integrating recent findings from the field of linguistics with new semantic features. Commonsense knowledge is the routine knowledge people have of the everyday world. Because such knowledge is widely used it is frequently omitted from social communications such as texts. It is understandable that without this knowledge computers will have difficulty making sense of textual information. In this dissertation a new set of computational and linguistic features are used in a supervised learning approach to resolve the pronominal anaphora in document. Commonsense knowledge sources such as ConceptNet and WordNet are used and similarity measures are extracted to uncover the elaborative information embedded in the words that can help in the process of anaphora resolution. The anaphoric system is tested on 350 Wall Street Journal articles from the BBN corpus. When compared with other systems available such as BART (Versley et al. 2008) and Charniak and Elsner 2009, our system performed better and also resolved a much wider range of anaphora. We were able to achieve a 92% F-measure on the BBN corpus and an average of 85% F-measure when tested on other genres of documents such as children stories and short stories selected from the web

    Essential Speech and Language Technology for Dutch: Results by the STEVIN-programme

    Get PDF
    Computational Linguistics; Germanic Languages; Artificial Intelligence (incl. Robotics); Computing Methodologie
    • 

    corecore