2,833 research outputs found

    Transferring CNNs to Multi-instance Multi-label Classification on Small Datasets

    Get PDF
    Image tagging is a well known challenge in image processing. It is typically addressed through multi-instance multi-label (MIML) classification methodologies. Convolutional Neural Networks (CNNs) possess great potential to perform well on MIML tasks, since multi-level convolution and max pooling coincide with the multi-instance setting and the sharing of hidden representation may benefit multi-label modeling. However, CNNs usually require a large amount of carefully labeled data for training, which is hard to obtain in many real applications. In this paper, we propose a new approach for transferring pre-trained deep networks such as VGG16 on Imagenet to small MIML tasks. We extract features from each group of the network layers and apply multiple binary classifiers to them for multi-label prediction. Moreover, we adopt an L1-norm regularized Logistic Regression (L1LR) to find the most effective features for learning the multi-label classifiers. The experiment results on two most-widely used and relatively small benchmark MIML image datasets demonstrate that the proposed approach can substantially outperform the state-of-the-art algorithms, in terms of all popular performance metrics

    What value do explicit high level concepts have in vision to language problems?

    Full text link
    Much of the recent progress in Vision-to-Language (V2L) problems has been achieved through a combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). This approach does not explicitly represent high-level semantic concepts, but rather seeks to progress directly from image features to text. We propose here a method of incorporating high-level concepts into the very successful CNN-RNN approach, and show that it achieves a significant improvement on the state-of-the-art performance in both image captioning and visual question answering. We also show that the same mechanism can be used to introduce external semantic information and that doing so further improves performance. In doing so we provide an analysis of the value of high level semantic information in V2L problems.Comment: Accepted to IEEE Conf. Computer Vision and Pattern Recognition 2016. Fixed titl

    Multi-level Feature Fusion-based CNN for Local Climate Zone Classification from Sentinel-2 Images: Benchmark Results on the So2Sat LCZ42 Dataset

    Get PDF
    As a unique classification scheme for urban forms and functions, the local climate zone (LCZ) system provides essential general information for any studies related to urban environments, especially on a large scale. Remote sensing data-based classification approaches are the key to large-scale mapping and monitoring of LCZs. The potential of deep learning-based approaches is not yet fully explored, even though advanced convolutional neural networks (CNNs) continue to push the frontiers for various computer vision tasks. One reason is that published studies are based on different datasets, usually at a regional scale, which makes it impossible to fairly and consistently compare the potential of different CNNs for real-world scenarios. This study is based on the big So2Sat LCZ42 benchmark dataset dedicated to LCZ classification. Using this dataset, we studied a range of CNNs of varying sizes. In addition, we proposed a CNN to classify LCZs from Sentinel-2 images, Sen2LCZ-Net. Using this base network, we propose fusing multi-level features using the extended Sen2LCZ-Net-MF. With this proposed simple network architecture and the highly competitive benchmark dataset, we obtain results that are better than those obtained by the state-of-the-art CNNs, while requiring less computation with fewer layers and parameters. Large-scale LCZ classification examples of completely unseen areas are presented, demonstrating the potential of our proposed Sen2LCZ-Net-MF as well as the So2Sat LCZ42 dataset. We also intensively investigated the influence of network depth and width and the effectiveness of the design choices made for Sen2LCZ-Net-MF. Our work will provide important baselines for future CNN-based algorithm developments for both LCZ classification and other urban land cover land use classification
    • …
    corecore