482 research outputs found

    Energy Disaggregation Using Elastic Matching Algorithms

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.Peer reviewedFinal Published versio

    Robust energy disaggregation using appliance-specific temporal contextual information

    Get PDF
    An extension of the baseline non-intrusive load monitoring approach for energy disaggregation using temporal contextual information is presented in this paper. In detail, the proposed approach uses a two-stage disaggregation methodology with appliance-specific temporal contextual information in order to capture time-varying power consumption patterns in low-frequency datasets. The proposed methodology was evaluated using datasets of different sampling frequency, number and type of appliances. When employing appliance-specific temporal contextual information, an improvement of 1.5% up to 7.3% was observed. With the two-stage disaggregation architecture and using appliance-specific temporal contextual information, the overall energy disaggregation accuracy was further improved across all evaluated datasets with the maximum observed improvement, in terms of absolute increase of accuracy, being equal to 6.8%, thus resulting in a maximum total energy disaggregation accuracy improvement equal to 10.0%.Peer reviewedFinal Published versio

    Non-intrusive Load Monitoring based on Self-supervised Learning

    Full text link
    Deep learning models for non-intrusive load monitoring (NILM) tend to require a large amount of labeled data for training. However, it is difficult to generalize the trained models to unseen sites due to different load characteristics and operating patterns of appliances between data sets. For addressing such problems, self-supervised learning (SSL) is proposed in this paper, where labeled appliance-level data from the target data set or house is not required. Initially, only the aggregate power readings from target data set are required to pre-train a general network via a self-supervised pretext task to map aggregate power sequences to derived representatives. Then, supervised downstream tasks are carried out for each appliance category to fine-tune the pre-trained network, where the features learned in the pretext task are transferred. Utilizing labeled source data sets enables the downstream tasks to learn how each load is disaggregated, by mapping the aggregate to labels. Finally, the fine-tuned network is applied to load disaggregation for the target sites. For validation, multiple experimental cases are designed based on three publicly accessible REDD, UK-DALE, and REFIT data sets. Besides, state-of-the-art neural networks are employed to perform NILM task in the experiments. Based on the NILM results in various cases, SSL generally outperforms zero-shot learning in improving load disaggregation performance without any sub-metering data from the target data sets.Comment: 12 pages,10 figure

    2D Transformations of Energy Signals for Energy Disaggregation

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)The aim of Non-Intrusive Load Monitoring is to estimate the energy consumption of individual electrical appliances by disaggregating the overall power consumption that has been sampled from a smart meter at a house or commercial/industrial building. Last decade’s developments in deep learning and the utilization of Convolutional Neural Networks have improved disaggregation accuracy significantly, especially when utilizing two-dimensional signal representations. However, converting time series’ to two-dimensional representations is still an open challenge, and it is not clear how it influences the performance of the energy disaggregation. Therefore, in this article, six different two-dimensional representation techniques are compared in terms of performance, runtime, influence on sampling frequency, and robustness towards Gaussian white noise. The evaluation results show an advantage of two-dimensional imaging techniques over univariate and multivariate features. In detail, the evaluation results show that: first, the active and reactive power-based signatures double Fourier based signatures, as well as outperforming most of the other approaches for low levels of noise. Second, while current and voltage signatures are outperformed at low levels of noise, they perform best under high noise conditions and show the smallest decrease in performance with increasing noise levels. Third, the effect of the sampling frequency on the energy disaggregation performance for time series imaging is most prominent up to 1.2 kHz, while, above 1.2 kHz, no significant improvements in terms of performance could be observed.Peer reviewe

    Energy Disaggregation using Two-Stage Fusion of Binary Device Detectors

    Get PDF
    A data-driven methodology to improve the energy disaggregation accuracy during Non-Intrusive Load Monitoring is proposed. In detail, the method is using a two-stage classification scheme, with the first stage consisting of classification models processing the aggregated signal in parallel and each of them producing a binary device detection score, and the second stage consisting of fusion regression models for estimating the power consumption for each of the electrical appliances. The accuracy of the proposed approach was tested on three datasets (ECO, REDD and iAWE), which are available online, using four different classifiers. The presented approach improves the estimation accuracy by up to 4.1% with respect to a basic energy disaggregation architecture, while the improvement on device level was up to 10.1%. Analysis on device level showed significant improvement of power consumption estimation accuracy especially for continuous and non-linear appliances across all evaluated datasets

    A Modified Sequence-to-point HVAC Load Disaggregation Algorithm

    Full text link
    This paper presents a modified sequence-to-point (S2P) algorithm for disaggregating the heat, ventilation, and air conditioning (HVAC) load from the total building electricity consumption. The original S2P model is convolutional neural network (CNN) based, which uses load profiles as inputs. We propose three modifications. First, the input convolution layer is changed from 1D to 2D so that normalized temperature profiles are also used as inputs to the S2P model. Second, a drop-out layer is added to improve adaptability and generalizability so that the model trained in one area can be transferred to other geographical areas without labelled HVAC data. Third, a fine-tuning process is proposed for areas with a small amount of labelled HVAC data so that the pre-trained S2P model can be fine-tuned to achieve higher disaggregation accuracy (i.e., better transferability) in other areas. The model is first trained and tested using smart meter and sub-metered HVAC data collected in Austin, Texas. Then, the trained model is tested on two other areas: Boulder, Colorado and San Diego, California. Simulation results show that the proposed modified S2P algorithm outperforms the original S2P model and the support-vector machine based approach in accuracy, adaptability, and transferability

    Transferability of neural networks approaches for low-rate energy disaggregation

    Get PDF
    Energy disaggregation of appliances using non-intrusive load monitoring (NILM) represents a set of signal and information processing methods used for appliance-level information extraction out of a meter's total or aggregate load. Large-scale deployments of smart meters worldwide and the availability of large amounts of data, motivates the shift from traditional source separation and Hidden Markov Model-based NILM towards data-driven NILM methods. Furthermore, we address the potential for scalable NILM roll-out by tackling disaggregation complexity as well as disaggregation on houses which have not been 'seen' before by the network, e.g., during training. In this paper, we focus on low rate NILM (with active power meter measurements sampled between 1-60 seconds) and present two different neural network architectures, one, based on convolutional neural network, and another based on gated recurrent unit, both of which classify the state and estimate the average power consumption of targeted appliances. Our proposed designs are driven by the need to have a well-trained generalised network which would be able to produce accurate results on a house that is not present in the training set, i.e., transferability. Performance results of the designed networks show excellent generalization ability and improvement compared to the state of the art

    Modelling of Electrical Appliance Signatures for Energy Disaggregation

    Get PDF
    The rapid development of technology in the electrical sector within the last 20 years has led to growing electric power needs through the increased number of electrical appliances and automation of tasks. In contrary, reduction of the overall energy consumption as well as efficient energy management are needed, in order to reduce global warming and meet the global climate protection goals. These requirements have led to the recent adoption of smart-meters and smart-grids, as well as to the rise of Non-Intrusive Load Monitoring. Non-Intrusive Load Monitoring aims to extract the energy consumption of individual electrical appliances through disaggregation of the total power consumption as measured by a single smart meter at the inlet of a household. Therefore, Non-Intrusive Load Monitoring is a highly under-determined problem which aims to estimate multiple variables from a single observation, thus is impossible to be solved analytical. In order to find accurate estimates of the unknown variables three fundamentally different approaches, namely deep-learning, pattern matching and single-channel source separation, have been investigated in the literature in order to solve the Non-Intrusive Load Monitoring problem. While Non-Intrusive Load Monitoring has multiple areas of application, including energy reduction through consumer awareness, load scheduling for energy cost optimization or reduction of peak demands, the focus of this thesis is especially on the performance of the disaggregation algorithm, the key part of the Non-Intrusive Load Monitoring architecture. In detail, optimizations are proposed for all three architectures, while the focus lies on deep-learning based approaches. Furthermore, the transferability capability of the deep-learning based approach is investigated and a NILM specific transfer architecture is proposed. The main contribution of the thesis is threefold. First, with Non-Intrusive Load Monitoring being a time-series problem incorporation of temporal information is crucial for accurate modelling of the appliance signatures and the change of signatures over time. Therefore, previously published architectures based on deep-learning have focused on utilizing regression models which intrinsically incorporating temporal information. In this work, the idea of incorporating temporal information is extended especially through modelling temporal patterns of appliances not only in the regression stage, but also in the input feature vector, i.e. by using fractional calculus, feature concatenation or high-frequency double Fourier integral signatures. Additionally, multi variance matching is utilized for Non-Intrusive Load Monitoring in order to have additional degrees of freedom for a pattern matching based solution. Second, with Non-Intrusive Load Monitoring systems expected to operate in realtime as well as being low-cost applications, computational complexity as well as storage limitations must be considered. Therefore, in this thesis an approximation for frequency domain features is presented in order to account for a reduction in computational complexity. Furthermore, investigations of reduced sampling frequencies and their impact on disaggregation performance has been evaluated. Additionally, different elastic matching techniques have been compared in order to account for reduction of training times and utilization of models without trainable parameters. Third, in order to fully utilize Non-Intrusive Load Monitoring techniques accurate transfer models, i.e. models which are trained on one data domain and tested on a different data domain, are needed. In this context it is crucial to transfer time-variant and manufacturer dependent appliance signatures to manufacturer invariant signatures, in order to assure accurate transfer modelling. Therefore, a transfer learning architecture specifically adapted to the needs of Non-Intrusive Load Monitoring is presented. Overall, this thesis contributes to the topic of Non-Intrusive Load Monitoring improving the performance of the disaggregation stage while comparing three fundamentally different approaches for the disaggregation problem
    • …
    corecore