125 research outputs found

    Deep convolutional neural networks for multi-planar lung nodule detection: improvement in small nodule identification

    Get PDF
    Objective: In clinical practice, small lung nodules can be easily overlooked by radiologists. The paper aims to provide an efficient and accurate detection system for small lung nodules while keeping good performance for large nodules. Methods: We propose a multi-planar detection system using convolutional neural networks. The 2-D convolutional neural network model, U-net++, was trained by axial, coronal, and sagittal slices for the candidate detection task. All possible nodule candidates from the three different planes are combined. For false positive reduction, we apply 3-D multi-scale dense convolutional neural networks to efficiently remove false positive candidates. We use the public LIDC-IDRI dataset which includes 888 CT scans with 1186 nodules annotated by four radiologists. Results: After ten-fold cross-validation, our proposed system achieves a sensitivity of 94.2% with 1.0 false positive/scan and a sensitivity of 96.0% with 2.0 false positives/scan. Although it is difficult to detect small nodules (i.e. < 6 mm), our designed CAD system reaches a sensitivity of 93.4% (95.0%) of these small nodules at an overall false positive rate of 1.0 (2.0) false positives/scan. At the nodule candidate detection stage, results show that a multi-planar method is capable to detect more nodules compared to using a single plane. Conclusion: Our approach achieves good performance not only for small nodules, but also for large lesions on this dataset. This demonstrates the effectiveness and efficiency of our developed CAD system for lung nodule detection. Significance: The proposed system could provide support for radiologists on early detection of lung cancer

    Deep learning for lung cancer on computed tomography:early detection and prognostic prediction

    Get PDF
    Lung cancer is one of the most fatal cancers in the world, the leading cause of death among both men and women. The five-year survival rate for lung cancer patients is only between 10 and 20%. However, the mortality rate can be reduced if lung cancer is diagnosed at an early stage and treated promptly. Screening trials have been established in many countries to improve early detetion of lung cancer, but it results in numerous scans that need to be evaluated, which is labor-intensive. On the other hand, when lung cancer is diagnosed at an early stage in screening, the clinical response after the treatment can vary between patients. Therefore, strong needs exist for accurate early detection and prognostic prediction of lung cancer.Deep learning recently has achieved great success in medical image analysis, especially for lung cancer. The results described in this thesis show that combining clinical procedures, deep learning techniques are feasible to assist radiologists with pulmonary nodule detection and rule out most negative scans in lung cancer screening. Besides, by integrating clinical factors and imaging features, deep learning can identify high mortality risk lung cancer patients who could benefit from adjuvant chemotherapy. With the implementation of lung cancer screening programs, more imaging and clinical data will be available, which enables deep learning to further boost the efficiency of screening procedures and lower the lung cancer mortality in the future

    The Discrete Analysis of the Tissue Biopsy Images with Metamaterial Formalization:Identifying Tumor Locus

    Get PDF
    Herein, we develop an enhanced and automated methodology for detection of the tumour cells in fixed biopsy samples. Metamaterial formalism (MMF) approach allowing recognition of tumour areas in tissue samples is enhanced by providing an advanced technique to digitize mouse biopsy images. Thus, a colour-based segmentation technique based on the K-means clustering method is used allowing for a precise segmentation of the cells composing the biological tissue sample. Errors occurring at the tissue digitization steps are detected by applying MMF. Doing so, we end up with the robust, fully automated approach with no needs of the human intervention, ready for the clinical applications. The proposed methodology consists of three major steps, i. e. digitization of the biopsy image, analysis of the biopsy image, modelling of the disordered metamaterial. It is worthwhile mentioning, that the technique under consideration allows for the cancer stage detection. Moreover, early stage cancer diagnosis is possible by applying MMF

    Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework

    Get PDF
    Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of “radiomics and genomics” has been considered under the umbrella of “radiogenomics”. Furthermore, AI in a radiogenomics’ environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor’s characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them

    Characterization of alar ligament on 3.0T MRI: a cross-sectional study in IIUM Medical Centre, Kuantan

    Get PDF
    INTRODUCTION: The main purpose of the study is to compare the normal anatomy of alar ligament on MRI between male and female. The specific objectives are to assess the prevalence of alar ligament visualized on MRI, to describe its characteristics in term of its course, shape and signal homogeneity and to find differences in alar ligament signal intensity between male and female. This study also aims to determine the association between the heights of respondents with alar ligament signal intensity and dimensions. MATERIALS & METHODS: 50 healthy volunteers were studied on 3.0T MR scanner Siemens Magnetom Spectra using 2-mm proton density, T2 and fat-suppression sequences. Alar ligament is depicted in 3 planes and the visualization and variability of the ligament courses, shapes and signal intensity characteristics were determined. The alar ligament dimensions were also measured. RESULTS: Alar ligament was best depicted in coronal plane, followed by sagittal and axial planes. The orientations were laterally ascending in most of the subjects (60%), predominantly oval in shaped (54%) and 67% showed inhomogenous signal. No significant difference of alar ligament signal intensity between male and female respondents. No significant association was found between the heights of the respondents with alar ligament signal intensity and dimensions. CONCLUSION: Employing a 3.0T MR scanner, the alar ligament is best portrayed on coronal plane, followed by sagittal and axial planes. However, tremendous variability of alar ligament as depicted in our data shows that caution needs to be exercised when evaluating alar ligament, especially during circumstances of injury

    Case series of breast fillers and how things may go wrong: radiology point of view

    Get PDF
    INTRODUCTION: Breast augmentation is a procedure opted by women to overcome sagging breast due to breastfeeding or aging as well as small breast size. Recent years have shown the emergence of a variety of injectable materials on market as breast fillers. These injectable breast fillers have swiftly gained popularity among women, considering the minimal invasiveness of the procedure, nullifying the need for terrifying surgery. Little do they know that the procedure may pose detrimental complications, while visualization of breast parenchyma infiltrated by these fillers is also deemed substandard; posing diagnostic challenges. We present a case series of three patients with prior history of hyaluronic acid and collagen breast injections. REPORT: The first patient is a 37-year-old lady who presented to casualty with worsening shortness of breath, non-productive cough, central chest pain; associated with fever and chills for 2-weeks duration. The second patient is a 34-year-old lady who complained of cough, fever and haemoptysis; associated with shortness of breath for 1-week duration. CT in these cases revealed non thrombotic wedge-shaped peripheral air-space densities. The third patient is a 37‐year‐old female with right breast pain, swelling and redness for 2- weeks duration. Previous collagen breast injection performed 1 year ago had impeded sonographic visualization of the breast parenchyma. MRI breasts showed multiple non- enhancing round and oval shaped lesions exhibiting fat intensity. CONCLUSION: Radiologists should be familiar with the potential risks and hazards as well as limitations of imaging posed by breast fillers such that MRI is required as problem-solving tool
    corecore