32,079 research outputs found

    SCADA System Testbed for Cybersecurity Research Using Machine Learning Approach

    Full text link
    This paper presents the development of a Supervisory Control and Data Acquisition (SCADA) system testbed used for cybersecurity research. The testbed consists of a water storage tank's control system, which is a stage in the process of water treatment and distribution. Sophisticated cyber-attacks were conducted against the testbed. During the attacks, the network traffic was captured, and features were extracted from the traffic to build a dataset for training and testing different machine learning algorithms. Five traditional machine learning algorithms were trained to detect the attacks: Random Forest, Decision Tree, Logistic Regression, Naive Bayes and KNN. Then, the trained machine learning models were built and deployed in the network, where new tests were made using online network traffic. The performance obtained during the training and testing of the machine learning models was compared to the performance obtained during the online deployment of these models in the network. The results show the efficiency of the machine learning models in detecting the attacks in real time. The testbed provides a good understanding of the effects and consequences of attacks on real SCADA environmentsComment: E-Preprin

    Adversarial-Playground: A Visualization Suite Showing How Adversarial Examples Fool Deep Learning

    Full text link
    Recent studies have shown that attackers can force deep learning models to misclassify so-called "adversarial examples": maliciously generated images formed by making imperceptible modifications to pixel values. With growing interest in deep learning for security applications, it is important for security experts and users of machine learning to recognize how learning systems may be attacked. Due to the complex nature of deep learning, it is challenging to understand how deep models can be fooled by adversarial examples. Thus, we present a web-based visualization tool, Adversarial-Playground, to demonstrate the efficacy of common adversarial methods against a convolutional neural network (CNN) system. Adversarial-Playground is educational, modular and interactive. (1) It enables non-experts to compare examples visually and to understand why an adversarial example can fool a CNN-based image classifier. (2) It can help security experts explore more vulnerability of deep learning as a software module. (3) Building an interactive visualization is challenging in this domain due to the large feature space of image classification (generating adversarial examples is slow in general and visualizing images are costly). Through multiple novel design choices, our tool can provide fast and accurate responses to user requests. Empirically, we find that our client-server division strategy reduced the response time by an average of 1.5 seconds per sample. Our other innovation, a faster variant of JSMA evasion algorithm, empirically performed twice as fast as JSMA and yet maintains a comparable evasion rate. Project source code and data from our experiments available at: https://github.com/QData/AdversarialDNN-PlaygroundComment: 5 pages. {I.2.6}{Artificial Intelligence} ; {K.6.5}{Management of Computing and Information Systems}{Security and Protection}. arXiv admin note: substantial text overlap with arXiv:1706.0176

    Deep Learning in the Automotive Industry: Applications and Tools

    Full text link
    Deep Learning refers to a set of machine learning techniques that utilize neural networks with many hidden layers for tasks, such as image classification, speech recognition, language understanding. Deep learning has been proven to be very effective in these domains and is pervasively used by many Internet services. In this paper, we describe different automotive uses cases for deep learning in particular in the domain of computer vision. We surveys the current state-of-the-art in libraries, tools and infrastructures (e.\,g.\ GPUs and clouds) for implementing, training and deploying deep neural networks. We particularly focus on convolutional neural networks and computer vision use cases, such as the visual inspection process in manufacturing plants and the analysis of social media data. To train neural networks, curated and labeled datasets are essential. In particular, both the availability and scope of such datasets is typically very limited. A main contribution of this paper is the creation of an automotive dataset, that allows us to learn and automatically recognize different vehicle properties. We describe an end-to-end deep learning application utilizing a mobile app for data collection and process support, and an Amazon-based cloud backend for storage and training. For training we evaluate the use of cloud and on-premises infrastructures (including multiple GPUs) in conjunction with different neural network architectures and frameworks. We assess both the training times as well as the accuracy of the classifier. Finally, we demonstrate the effectiveness of the trained classifier in a real world setting during manufacturing process.Comment: 10 page
    • …
    corecore