19,633 research outputs found

    tRNA splicing

    Get PDF
    Introns interrupt the continuity of many eukaryal genes, and therefore their removal by splicing is a crucial step in gene expression. Interestingly, even within Eukarya there are at least four splicing mechanisms. mRNA splicing in the nucleus takes place in two phosphotransfer reactions on a complex and dynamic machine, the spliceosome. This reaction is related in mechanism to the two self-splicing mechanisms for Group 1 and Group 2 introns. In fact the Group 2 introns are spliced by an identical mechanism to mRNA splicing, although there is no general requirement for either proteins or co-factors. Thus it seems likely that the Group 2 and nuclear mRNA splicing reactions have diverged from a common ancestor. tRNA genes are also interrupted by introns, but here the splicing mechanism is quite different because it is catalyzed by three enzymes, all proteins and with an intrinsic requirement for ATP hydrolysis. tRNA splicing occurs in all three major lines of descent, the Bacteria, the Archaea, and the Eukarya. In bacteria the introns are self-splicing (1-3). Until recently it was thought that the mechanisms of tRNA splicing in Eukarya and Archaea were unrelated as well. In the past year, however, it has been found that the first enzyme in the tRNA splicing pathway, the tRNA endonuclease, has been conserved in evolution since the divergence of the Eukarya and the Archaea. Surprising insights have been obtained by comparison of the structures and mechanisms of tRNA endonuclease from these two divergent lines

    Influence of the structural modulations and the Chain-ladder interaction in the Sr_14−xCa_xCu_24O_41Sr\_{14-x}Ca\_{x}Cu\_{24}O\_{41} compounds

    Full text link
    We studied the effects of the incommensurate structural modulations on the ladder subsystem of the Sr_14−xCa_xCu_24O_41Sr\_{14-x}Ca\_{x}Cu\_{24}O\_{41} family of compounds using ab-initio explicitly-correlated calculations. From these calculations we derived t−Jt-J model as a function of the fourth crystallographic coordinate τ\tau describing the incommensurate modulations. It was found that in the highly calcium-doped system, the on-site orbital energies are strongly modulated along the ladder legs. On the contrary the two sites of the ladder rungs are iso-energetic and the holes are thus expected to be delocalized on the rungs. Chain-ladder interactions were also evaluated and found to be very negligible. The ladder superconductivity model for these systems is discussed in the light of the present results.Comment: 8 octobre 200
    • …
    corecore