12,812 research outputs found

    Japanese Management Strategies

    Get PDF
    During the detailed researching work of the Kaizen based management practices of the most advanced Japanese companies, that is the best representatives of the Japanese industry, at certain phases occures the need to have a look of a wider perspective embracing some aspects of the strategies and the external connections of these firms, especially the lean enterprises.The goal of this paper is giving a framework for the detailed researches investigating the Kaizen based activities within the companies with the help of general pictures on the ‘Japanese way’ and on the behaviour of the Japanese companies in the glorious fast growth period and then in the times of the serious crises and stagnation as an adaptation to the globalization process.Japanese company culture, Kaizen management philosophy, lean enterprise, corporate strategy,confrontation strategy, avoiding strategy, organizational learning

    Takt Time Grouping: A Method to Implement Kanban-Flow Manufacturing in an Unbalanced Process with Moving Constraints

    Get PDF
    One-piece flow and kanban/pull methods have been used to reduce WIP and speed flowtime in manufacturing flow processes; however, these methods have limitations. For example, one-piece flow does not work well when there are relatively large set-up times required between different components. One-piece flow also requires operations to be well-balanced. Unfortunately, these conditions often do not exist. The Theory of Constraints drum-buffer-rope (DBR) method is designed for unbalanced processes, and it has been shown to be effective for products with large operation time variation. However, DBR does not generally optimize flowtime and cannot handle a process with moving constraints (bottlenecks). Recognizing that there are manufacturing applications that have these limitations, we have developed a method called Takt Time Grouping (TTG) for implementing kanban-flow manufacturing when one-piece flow or DBR do not perform well. TTG combines one-piece flow, transfer-batch sizing and DBR concepts through the use of a grouping algorithm. Using a discrete event simulation model, the application of TTG, one-piece flow, DBR and a dynamic version of DBR, that moves the time-buffer and drum when it is known that constraints move (DynDBR), was investigated under varying conditions and production processes. Generalized findings of TTG’s advantages over competing methods are presented

    Inventory drivers in a pharmaceutical supply chain

    Get PDF
    In recent years, inventory reduction has been a key objective of pharmaceutical companies, especially within cost optimization initiatives. Pharmaceutical supply chains are characterized by volatile and unpredictable demands –especially in emergent markets-, high service levels, and complex, perishable finished-good portfolios, which makes keeping reasonable amounts of stock a true challenge. However, a one-way strategy towards zero-inventory is in reality inapplicable, due to the strategic nature and importance of the products being commercialised. Therefore, pharmaceutical supply chains are in need of new inventory strategies in order to remain competitive. Finished-goods inventory management in the pharmaceutical industry is closely related to the manufacturing systems and supply chain configurations that companies adopt. The factors considered in inventory management policies, however, do not always cover the full supply chain spectrum in which companies operate. This paper works under the pre-assumption that, in fact, there is a complex relationship between the inventory configurations that companies adopt and the factors behind them. The intention of this paper is to understand the factors driving high finished-goods inventory levels in pharmaceutical supply chains and assist supply chain managers in determining which of them can be influenced in order to reduce inventories to an optimal degree. Reasons for reducing inventory levels are found in high inventory holding and scrap related costs; in addition to lost sales for not being able to serve the customers with the adequate shelf life requirements. The thesis conducts a single case study research in a multi-national pharmaceutical company, which is used to examine typical inventory configurations and the factors affecting these configurations. This paper presents a framework that can assist supply chain managers in determining the most important inventory drivers in pharmaceutical supply chains. The findings in this study suggest that while external and downstream supply chain factors are recognized as being critical to pursue inventory optimization initiatives, pharmaceutical companies are oriented towards optimizing production processes and meeting regulatory requirements while still complying with high service levels, being internal factors the ones prevailing when making inventory management decisions. Furthermore, this paper investigates, through predictive modelling techniques, how various intrinsic and extrinsic factors influence the inventory configurations of the case study company. The study shows that inventory configurations are relatively unstable over time, especially in configurations that present high safety stock levels; and that production features and product characteristics are important explanatory factors behind high inventory levels. Regulatory requirements also play an important role in explaining the high strategic inventory levels that pharmaceutical companies hold

    Identifying and eliminating the root causes of the undesirable effects present in small manufacturing business production systems

    Get PDF
    Includes bibliographical references.The manufacturing industry in South Africa is presently experiencing severe competition from cheap imports from the east. Furthermore, the present high interest rate and newly legislated business and labour laws have created unfavourable conditions for small manufacturing businesses. For small manufacturing businesses to survive in this competitive market and under unfavourable conditions, they require increased performance in lead times, product innovation, product and service quality, manufacturing flexibility and responsiveness and, reduced manufacturing costs. To attain sustainable improvements requires a comprehensive understanding of problematic situations present in small business manufacturing systems. The aim of this project was to identify the major problems present in small business manufacturing systems, to highlight the difference between, and show the causality relationships between, "symptoms" of problems and their root causes, and to propose ways of eliminating the problems

    Implementing cellular manufacturing methodologies to improve the performance of a manufacturing operation

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 62).Many traditional high-mix, low-volume manufacturing facilities utilize process villages, whereby similar operations are grouped together in an effort to gain efficiencies. While process villages can improve certain metrics and increase capacity utilization, many wastes can be created that outweigh most benefits. In many cases process villages operate with large batch sizes, which result in longer lead-times and increased inventories. A different approach, for an appropriate range of product mixes and volumes, is to form production cells for common products that group different processes together to form complete value streams. The manufacturing cells focus on completely finishing products before handing them off and result in reduced lead-times and inventories. This thesis presents a methodology for implementing such production cells in a manufacturing environment. The author spent six months at a leading aerospace company implementing cellular manufacturing principles in designing several production cells for a transmission component manufacturing department as part of a lean transformation effort. The cell design methodology implemented consisted of several key processes such as process flow design, material handling design, workplace organization, and staffing. The process flow design consisted of activities such as grouping products into families, designing value streams, and performing capacity analysis. Material handling design developed solutions for how products physically flow through the cell and managing work-in-process. Workplace organization focused on utilizing visual factory and 5S principles to ensure strong communication and information flow as well as first class equipment organization and housekeeping. Finally, workload analyses were performed to appropriately staff the cells to minimize costs and ensure efficient operations. Ultimately, the goal of any transformation effort is to reduce waste and add value, which would not be possible if the culture of the organization did not support the physical and operational design changes. Hence the final, and arguably most important piece of the transformation, which the author participated in, was engaging the workforce to drive the culture change.by Manuel Correa.S.M.M.B.A

    Proactive management of uncertainty to improve scheduling robustness in proces industries

    Get PDF
    Dinamisme, capacitat de resposta i flexibilitat són característiques essencials en el desenvolupament de la societat actual. Les noves tendències de globalització i els avenços en tecnologies de la informació i comunicació fan que s'evolucioni en un entorn altament dinàmic i incert. La incertesa present en tot procés esdevé un factor crític a l'hora de prendre decisions, així com un repte altament reconegut en l'àrea d'Enginyeria de Sistemes de Procés (PSE). En el context de programació de les operacions, els models de suport a la decisió proposats fins ara, així com també software comercial de planificació i programació d'operacions avançada, es basen generalment en dades estimades, assumint implícitament que el programa d'operacions s'executarà sense desviacions. La reacció davant els efectes de la incertesa en temps d'execució és una pràctica habitual, però no sempre resulta efectiva o factible. L'alternativa és considerar la incertesa de forma proactiva, és a dir, en el moment de prendre decisions, explotant el coneixement disponible en el propi sistema de modelització.Davant aquesta situació es plantegen les següents preguntes: què s'entén per incertesa? Com es pot considerar la incertesa en el problema de programació d'operacions? Què s'entén per robustesa i flexibilitat d'un programa d'operacions? Com es pot millorar aquesta robustesa? Quins beneficis comporta? Aquesta tesi respon a aquestes preguntes en el marc d'anàlisis operacionals en l'àrea de PSE. La incertesa es considera no de la forma reactiva tradicional, sinó amb el desenvolupament de sistemes proactius de suport a la decisió amb l'objectiu d'identificar programes d'operació robustos que serveixin com a referència pel nivell inferior de control de planta, així com també per altres centres en un entorn de cadenes de subministrament. Aquest treball de recerca estableix les bases per formalitzar el concepte de robustesa d'un programa d'operacions de forma sistemàtica. Segons aquest formalisme, els temps d'operació i les ruptures d'equip són considerats inicialment com a principals fonts d'incertesa presents a nivell de programació de la producció. El problema es modelitza mitjançant programació estocàstica, desenvolupant-se finalment un entorn d'optimització basat en simulació que captura les múltiples fonts d'incertesa, així com també estratègies de programació d'operacions reactiva, de forma proactiva. La metodologia desenvolupada en el context de programació de la producció s'estén posteriorment per incloure les operacions de transport en sistemes de múltiples entitats i incertesa en els temps de distribució. Amb aquesta perspectiva més àmplia del nivell d'operació s'estudia la coordinació de les activitats de producció i transport, fins ara centrada en nivells estratègic o tàctic. L'estudi final considera l'efecte de la incertesa en la demanda en les decisions de programació de la producció a curt termini. El problema s'analitza des del punt de vista de gestió del risc, i s'avaluen diferents mesures per controlar l'eficiència del sistema en un entorn incert.En general, la tesi posa de manifest els avantatges en reconèixer i modelitzar la incertesa, amb la identificació de programes d'operació robustos capaços d'adaptar-se a un ampli rang de situacions possibles, enlloc de programes d'operació òptims per un escenari hipotètic. La metodologia proposada a nivell d'operació es pot considerar com un pas inicial per estendre's a nivells de decisió estratègics i tàctics. Alhora, la visió proactiva del problema permet reduir el buit existent entre la teoria i la pràctica industrial, i resulta en un major coneixement del procés, visibilitat per planificar activitats futures, així com també millora l'efectivitat de les tècniques reactives i de tot el sistema en general, característiques altament desitjables per mantenir-se actiu davant la globalitat, competitivitat i dinàmica que envolten un procés.Dynamism, responsiveness, and flexibility are essential features in the development of the current society. Globalization trends and fast advances in communication and information technologies make all evolve in a highly dynamic and uncertain environment. The uncertainty involved in a process system becomes a critical problem in decision making, as well as a recognized challenge in the area of Process Systems Engineering (PSE). In the context of scheduling, decision-support models developed up to this point, as well as commercial advanced planning and scheduling systems, rely generally on estimated input information, implicitly assuming that a schedule will be executed without deviations. The reaction to the effects of the uncertainty at execution time becomes a common practice, but it is not always effective or even possible. The alternative is to address the uncertainty proactively, i.e., at the time of reasoning, exploiting the available knowledge in the modeling procedure itself. In view of this situation, the following questions arise: what do we understand for uncertainty? How can uncertainty be considered within scheduling modeling systems? What is understood for schedule robustness and flexibility? How can schedule robustness be improved? What are the benefits? This thesis answers these questions in the context of operational analysis in PSE. Uncertainty is managed not from the traditional reactive viewpoint, but with the development of proactive decision-support systems aimed at identifying robust schedules that serve as a useful guidance for the lower control level, as well as for dependent entities in a supply chain environment. A basis to formalize the concept of schedule robustness is established. Based on this formalism, variable operation times and equipment breakdowns are first considered as the main uncertainties in short-term production scheduling. The problem is initially modeled using stochastic programming, and a simulation-based stochastic optimization framework is finally developed, which captures the multiple sources of uncertainty, as well as rescheduling strategies, proactively. The procedure-oriented system developed in the context of production scheduling is next extended to involve transport scheduling in multi-site systems with uncertain travel times. With this broader operational perspective, the coordination of production and transport activities, considered so far mainly in strategic and tactical analysis, is assessed. The final research point focuses on the effect of demands uncertainty in short-term scheduling decisions. The problem is analyzed from a risk management viewpoint, and alternative measures are assessed and compared to control the performance of the system in the uncertain environment.Overall, this research work reveals the advantages of recognizing and modeling uncertainty, with the identification of more robust schedules able to adapt to a wide range of possible situations, rather than optimal schedules for a hypothetical scenario. The management of uncertainty proposed from an operational perspective can be considered as a first step towards its extension to tactical and strategic levels of decision. The proactive perspective of the problem results in a more realistic view of the process system, and it is a promising way to reduce the gap between theory and industrial practices. Besides, it provides valuable insight on the process, visibility for future activities, as well as it improves the efficiency of reactive techniques and of the overall system, all highly desirable features to remain alive in the global, competitive, and dynamic process environment
    corecore