1,180 research outputs found

    Deep Transfer Learning for Automatic Speech Recognition: Towards Better Generalization

    Full text link
    Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research

    Music Information Retrieval: An Inspirational Guide to Transfer from Related Disciplines

    Get PDF
    The emerging field of Music Information Retrieval (MIR) has been influenced by neighboring domains in signal processing and machine learning, including automatic speech recognition, image processing and text information retrieval. In this contribution, we start with concrete examples for methodology transfer between speech and music processing, oriented on the building blocks of pattern recognition: preprocessing, feature extraction, and classification/decoding. We then assume a higher level viewpoint when describing sources of mutual inspiration derived from text and image information retrieval. We conclude that dealing with the peculiarities of music in MIR research has contributed to advancing the state-of-the-art in other fields, and that many future challenges in MIR are strikingly similar to those that other research areas have been facing

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy

    Improving Facial Analysis and Performance Driven Animation through Disentangling Identity and Expression

    Full text link
    We present techniques for improving performance driven facial animation, emotion recognition, and facial key-point or landmark prediction using learned identity invariant representations. Established approaches to these problems can work well if sufficient examples and labels for a particular identity are available and factors of variation are highly controlled. However, labeled examples of facial expressions, emotions and key-points for new individuals are difficult and costly to obtain. In this paper we improve the ability of techniques to generalize to new and unseen individuals by explicitly modeling previously seen variations related to identity and expression. We use a weakly-supervised approach in which identity labels are used to learn the different factors of variation linked to identity separately from factors related to expression. We show how probabilistic modeling of these sources of variation allows one to learn identity-invariant representations for expressions which can then be used to identity-normalize various procedures for facial expression analysis and animation control. We also show how to extend the widely used techniques of active appearance models and constrained local models through replacing the underlying point distribution models which are typically constructed using principal component analysis with identity-expression factorized representations. We present a wide variety of experiments in which we consistently improve performance on emotion recognition, markerless performance-driven facial animation and facial key-point tracking.Comment: to appear in Image and Vision Computing Journal (IMAVIS

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Non-Negative Discriminative Data Analytics

    Get PDF
    Due to advancements in data acquisition techniques, collecting datasets representing samples from multi-views has become more common recently (Jia et al. 2019). For instance, in genomics, a lymphoma patient’s dataset may include data on gene expression, single nucleotide polymorphism (SNP), and array Comparative genomic hybridization (aCGH) measurements. Learning from multiple views about the same objective, in general, obtains a better understanding of the hidden patterns of the data compared to learning from a single view data. Most of the existing multi-view learning techniques such as canonical correlation analysis (Hotelling et al. 1936) and multi-view support vector machine (Farquhar et al. 2006), multiple kernel learning (Zhang et al. 2016) are focused on extracting the shared information among multiple datasets. However, in some real-world applications, it’s appealing to extract the discriminative knowledge of multiple datasets, namely discriminative data analytics. For example, consider the one dataset as gene-expression measurements of cancer patients, and the other dataset as the gene-expression levels of healthy volunteers and the goal is to cluster cancer patients according to the molecular sub-types. Performing a single view analysis such as principal component analysis (PCA) on any of the dataset yields information related to the common knowledge between the two datasets (Garte et al. 1996). Addressing such challenge, contrastive PCA (Abid et al. 2017) and discriminative (d) PCA in (Jia et al. 2019) are proposed in to extract one dataset-specific information often missed by PCA. Inspired by dPCA, we propose a novel discriminative multi-view learning algorithm, namely Non-negative Discriminative Analysis (DNA), to extract the unique information of one dataset (a.k.a. view) with respect to the other dataset. This boils down to solving a non-negative matrix factorization problem. Furthermore, we apply the proposed DNA framework in various real-world down-stream machine learning applications such as feature selections, dimensionality reduction, classification, and clustering

    Comprehensive Study of Automatic Speech Emotion Recognition Systems

    Get PDF
    Speech emotion recognition (SER) is the technology that recognizes psychological characteristics and feelings from the speech signals through techniques and methodologies. SER is challenging because of more considerable variations in different languages arousal and valence levels. Various technical developments in artificial intelligence and signal processing methods have encouraged and made it possible to interpret emotions.SER plays a vital role in remote communication. This paper offers a recent survey of SER using machine learning (ML) and deep learning (DL)-based techniques. It focuses on the various feature representation and classification techniques used for SER. Further, it describes details about databases and evaluation metrics used for speech emotion recognition
    • …
    corecore