41,152 research outputs found

    Progressive Ensemble Networks for Zero-Shot Recognition

    Full text link
    Despite the advancement of supervised image recognition algorithms, their dependence on the availability of labeled data and the rapid expansion of image categories raise the significant challenge of zero-shot learning. Zero-shot learning (ZSL) aims to transfer knowledge from labeled classes into unlabeled classes to reduce human labeling effort. In this paper, we propose a novel progressive ensemble network model with multiple projected label embeddings to address zero-shot image recognition. The ensemble network is built by learning multiple image classification functions with a shared feature extraction network but different label embedding representations, which enhance the diversity of the classifiers and facilitate information transfer to unlabeled classes. A progressive training framework is then deployed to gradually label the most confident images in each unlabeled class with predicted pseudo-labels and update the ensemble network with the training data augmented by the pseudo-labels. The proposed model performs training on both labeled and unlabeled data. It can naturally bridge the domain shift problem in visual appearances and be extended to the generalized zero-shot learning scenario. We conduct experiments on multiple ZSL datasets and the empirical results demonstrate the efficacy of the proposed model.Comment: CVPR1

    Peer Collaborative Learning for Online Knowledge Distillation

    Get PDF
    Traditional knowledge distillation uses a two-stage training strategy to transfer knowledge from a high-capacity teacher model to a compact student model, which relies heavily on the pre-trained teacher. Recent online knowledge distillation alleviates this limitation by collaborative learning, mutual learning and online ensembling, following a one-stage end-to-end training fashion. However, collaborative learning and mutual learning fail to construct an online high-capacity teacher, whilst online ensembling ignores the collaboration among branches and its logit summation impedes the further optimisation of the ensemble teacher. In this work, we propose a novel Peer Collaborative Learning method for online knowledge distillation, which integrates online ensembling and network collaboration into a unified framework. Specifically, given a target network, we construct a multi-branch network for training, in which each branch is called a peer. We perform random augmentation multiple times on the inputs to peers and assemble feature representations outputted from peers with an additional classifier as the peer ensemble teacher. This helps to transfer knowledge from a high-capacity teacher to peers, and in turn further optimises the ensemble teacher. Meanwhile, we employ the temporal mean model of each peer as the peer mean teacher to collaboratively transfer knowledge among peers, which helps each peer to learn richer knowledge and facilitates to optimise a more stable model with better generalisation. Extensive experiments on CIFAR-10, CIFAR-100 and ImageNet show that the proposed method significantly improves the generalisation of various backbone networks and outperforms the state-of-the-art methods

    DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep Neural Networks

    Full text link
    Deep clustering has recently emerged as a promising technique for complex data clustering. Despite the considerable progress, previous deep clustering works mostly build or learn the final clustering by only utilizing a single layer of representation, e.g., by performing the K-means clustering on the last fully-connected layer or by associating some clustering loss to a specific layer, which neglect the possibilities of jointly leveraging multi-layer representations for enhancing the deep clustering performance. In view of this, this paper presents a Deep Clustering via Ensembles (DeepCluE) approach, which bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks. In particular, we utilize a weight-sharing convolutional neural network as the backbone, which is trained with both the instance-level contrastive learning (via an instance projector) and the cluster-level contrastive learning (via a cluster projector) in an unsupervised manner. Thereafter, multiple layers of feature representations are extracted from the trained network, upon which the ensemble clustering process is further conducted. Specifically, a set of diversified base clusterings are generated from the multi-layer representations via a highly efficient clusterer. Then the reliability of clusters in multiple base clusterings is automatically estimated by exploiting an entropy-based criterion, based on which the set of base clusterings are re-formulated into a weighted-cluster bipartite graph. By partitioning this bipartite graph via transfer cut, the final consensus clustering can be obtained. Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.Comment: To appear in IEEE Transactions on Emerging Topics in Computational Intelligenc

    Unsupervised Learning of Visual Representations using Videos

    Full text link
    Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present a simple yet surprisingly powerful approach for unsupervised learning of CNN. Specifically, we use hundreds of thousands of unlabeled videos from the web to learn visual representations. Our key idea is that visual tracking provides the supervision. That is, two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object or object part. We design a Siamese-triplet network with a ranking loss function to train this CNN representation. Without using a single image from ImageNet, just using 100K unlabeled videos and the VOC 2012 dataset, we train an ensemble of unsupervised networks that achieves 52% mAP (no bounding box regression). This performance comes tantalizingly close to its ImageNet-supervised counterpart, an ensemble which achieves a mAP of 54.4%. We also show that our unsupervised network can perform competitively in other tasks such as surface-normal estimation

    Cross-stitch Networks for Multi-task Learning

    Full text link
    Multi-task learning in Convolutional Networks has displayed remarkable success in the field of recognition. This success can be largely attributed to learning shared representations from multiple supervisory tasks. However, existing multi-task approaches rely on enumerating multiple network architectures specific to the tasks at hand, that do not generalize. In this paper, we propose a principled approach to learn shared representations in ConvNets using multi-task learning. Specifically, we propose a new sharing unit: "cross-stitch" unit. These units combine the activations from multiple networks and can be trained end-to-end. A network with cross-stitch units can learn an optimal combination of shared and task-specific representations. Our proposed method generalizes across multiple tasks and shows dramatically improved performance over baseline methods for categories with few training examples.Comment: To appear in CVPR 2016 (Spotlight

    An Ensemble-based Approach to Click-Through Rate Prediction for Promoted Listings at Etsy

    Full text link
    Etsy is a global marketplace where people across the world connect to make, buy and sell unique goods. Sellers at Etsy can promote their product listings via advertising campaigns similar to traditional sponsored search ads. Click-Through Rate (CTR) prediction is an integral part of online search advertising systems where it is utilized as an input to auctions which determine the final ranking of promoted listings to a particular user for each query. In this paper, we provide a holistic view of Etsy's promoted listings' CTR prediction system and propose an ensemble learning approach which is based on historical or behavioral signals for older listings as well as content-based features for new listings. We obtain representations from texts and images by utilizing state-of-the-art deep learning techniques and employ multimodal learning to combine these different signals. We compare the system to non-trivial baselines on a large-scale real world dataset from Etsy, demonstrating the effectiveness of the model and strong correlations between offline experiments and online performance. The paper is also the first technical overview to this kind of product in e-commerce context

    Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval

    Full text link
    This paper presents a new state-of-the-art for document image classification and retrieval, using features learned by deep convolutional neural networks (CNNs). In object and scene analysis, deep neural nets are capable of learning a hierarchical chain of abstraction from pixel inputs to concise and descriptive representations. The current work explores this capacity in the realm of document analysis, and confirms that this representation strategy is superior to a variety of popular hand-crafted alternatives. Experiments also show that (i) features extracted from CNNs are robust to compression, (ii) CNNs trained on non-document images transfer well to document analysis tasks, and (iii) enforcing region-specific feature-learning is unnecessary given sufficient training data. This work also makes available a new labelled subset of the IIT-CDIP collection, containing 400,000 document images across 16 categories, useful for training new CNNs for document analysis
    • …
    corecore