1,259 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    An Integrative Remote Sensing Application of Stacked Autoencoder for Atmospheric Correction and Cyanobacteria Estimation Using Hyperspectral Imagery

    Get PDF
    Hyperspectral image sensing can be used to effectively detect the distribution of harmful cyanobacteria. To accomplish this, physical- and/or model-based simulations have been conducted to perform an atmospheric correction (AC) and an estimation of pigments, including phycocyanin (PC) and chlorophyll-a (Chl-a), in cyanobacteria. However, such simulations were undesirable in certain cases, due to the difficulty of representing dynamically changing aerosol and water vapor in the atmosphere and the optical complexity of inland water. Thus, this study was focused on the development of a deep neural network model for AC and cyanobacteria estimation, without considering the physical formulation. The stacked autoencoder (SAE) network was adopted for the feature extraction and dimensionality reduction of hyperspectral imagery. The artificial neural network (ANN) and support vector regression (SVR) were sequentially applied to achieve AC and estimate cyanobacteria concentrations (i.e., SAE-ANN and SAE-SVR). Further, the ANN and SVR models without SAE were compared with SAE-ANN and SAE-SVR models for the performance evaluations. In terms of AC performance, both SAE-ANN and SAE-SVR displayed reasonable accuracy with the Nash???Sutcliffe efficiency (NSE) > 0.7. For PC and Chl-a estimation, the SAE-ANN model showed the best performance, by yielding NSE values > 0.79 and > 0.77, respectively. SAE, with fine tuning operators, improved the accuracy of the original ANN and SVR estimations, in terms of both AC and cyanobacteria estimation. This is primarily attributed to the high-level feature extraction of SAE, which can represent the spatial features of cyanobacteria. Therefore, this study demonstrated that the deep neural network has a strong potential to realize an integrative remote sensing application

    Quantitative Mapping of Soil Property Based on Laboratory and Airborne Hyperspectral Data Using Machine Learning

    Get PDF
    Soil visible and near-infrared spectroscopy provides a non-destructive, rapid and low-cost approach to quantify various soil physical and chemical properties based on their reflectance in the spectral range of 400–2500 nm. With an increasing number of large-scale soil spectral libraries established across the world and new space-borne hyperspectral sensors, there is a need to explore methods to extract informative features from reflectance spectra and produce accurate soil spectroscopic models using machine learning. Features generated from regional or large-scale soil spectral data play a key role in the quantitative spectroscopic model for soil properties. The Land Use/Land Cover Area Frame Survey (LUCAS) soil library was used to explore PLS-derived components and fractal features generated from soil spectra in this study. The gradient-boosting method performed well when coupled with extracted features on the estimation of several soil properties. Transfer learning based on convolutional neural networks (CNNs) was proposed to make the model developed from laboratory data transferable for airborne hyperspectral data. The soil clay map was successfully derived using HyMap imagery and the fine-tuned CNN model developed from LUCAS mineral soils, as deep learning has the potential to learn transferable features that generalise from the source domain to target domain. The external environmental factors like the presence of vegetation restrain the application of imaging spectroscopy. The reflectance data can be transformed into a vegetation suppressed domain with a force invariance approach, the performance of which was evaluated in an agricultural area using CASI airborne hyperspectral data. However, the relationship between vegetation and acquired spectra is complicated, and more efforts should put on removing the effects of external factors to make the model transferable from one sensor to another.:Abstract I Kurzfassung III Table of Contents V List of Figures IX List of Tables XIII List of Abbreviations XV 1 Introduction 1 1.1 Motivation 1 1.2 Soil spectra from different platforms 2 1.3 Soil property quantification using spectral data 4 1.4 Feature representation of soil spectra 5 1.5 Objectives 6 1.6 Thesis structure 7 2 Combining Partial Least Squares and the Gradient-Boosting Method for Soil Property Retrieval Using Visible Near-Infrared Shortwave Infrared Spectra 9 2.1 Abstract 10 2.2 Introduction 10 2.3 Materials and methods 13 2.3.1 The LUCAS soil spectral library 13 2.3.2 Partial least squares algorithm 15 2.3.3 Gradient-Boosted Decision Trees 15 2.3.4 Calculation of relative variable importance 16 2.3.5 Assessment 17 2.4 Results 17 2.4.1 Overview of the spectral measurement 17 2.4.2 Results of PLS regression for the estimation of soil properties 19 2.4.3 Results of PLS-GBDT for the estimation of soil properties 21 2.4.4 Relative important variables derived from PLS regression and the gradient-boosting method 24 2.5 Discussion 28 2.5.1 Dimension reduction for high-dimensional soil spectra 28 2.5.2 GBDT for quantitative soil spectroscopic modelling 29 2.6 Conclusions 30 3 Quantitative Retrieval of Organic Soil Properties from Visible Near-Infrared Shortwave Infrared Spectroscopy Using Fractal-Based Feature Extraction 31 3.1 Abstract 32 3.2 Introduction 32 3.3 Materials and Methods 35 3.3.1 The LUCAS topsoil dataset 35 3.3.2 Fractal feature extraction method 37 3.3.3 Gradient-boosting regression model 37 3.3.4 Evaluation 41 3.4 Results 42 3.4.1 Fractal features for soil spectroscopy 42 3.4.2 Effects of different step and window size on extracted fractal features 45 3.4.3 Modelling soil properties with fractal features 47 3.4.3 Comparison with PLS regression 49 3.5 Discussion 51 3.5.1 The importance of fractal dimension for soil spectra 51 3.5.2 Modelling soil properties with fractal features 52 3.6 Conclusions 53 4 Transfer Learning for Soil Spectroscopy Based on Convolutional Neural Networks and Its Application in Soil Clay Content Mapping Using Hyperspectral Imagery 55 4.1 Abstract 55 4.2 Introduction 56 4.3 Materials and Methods 59 4.3.1 Datasets 59 4.3.2 Methods 62 4.3.3 Assessment 67 4.4 Results and Discussion 67 4.4.1 Interpretation of mineral and organic soils from LUCAS dataset 67 4.4.2 1D-CNN and spectral index for LUCAS soil clay content estimation 69 4.4.3 Application of transfer learning for soil clay content mapping using the pre-trained 1D-CNN model 72 4.4.4 Comparison between spectral index and transfer learning 74 4.4.5 Large-scale soil spectral library for digital soil mapping at the local scale using hyperspectral imagery 75 4.5 Conclusions 75 5 A Case Study of Forced Invariance Approach for Soil Salinity Estimation in Vegetation-Covered Terrain Using Airborne Hyperspectral Imagery 77 5.1 Abstract 78 5.2 Introduction 78 5.3 Materials and Methods 81 5.3.1 Study area of Zhangye Oasis 81 5.3.2 Data description 82 5.3.3 Methods 83 5.3.3 Model performance assessment 85 5.4 Results and Discussion 86 5.4.1 The correlation between NDVI and soil salinity 86 5.4.2 Vegetation suppression performance using the Forced Invariance Approach 86 5.4.3 Estimation of soil properties using airborne hyperspectral data 88 5.5 Conclusions 90 6 Conclusions and Outlook 93 Bibliography 97 Acknowledgements 11

    Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer Learning

    Get PDF
    Recently, hyperspectral image (HSI) classification approaches based on deep learning (DL) models have been proposed and shown promising performance. However, because of very limited available training samples and massive model parameters, DL methods may suffer from overfitting. In this paper, we propose an end-to-end 3-D lightweight convolutional neural network (CNN) (abbreviated as 3-D-LWNet) for limited samples-based HSI classification. Compared with conventional 3-D-CNN models, the proposed 3-D-LWNet has a deeper network structure, less parameters, and lower computation cost, resulting in better classification performance. To further alleviate the small sample problem, we also propose two transfer learning strategies: 1) cross-sensor strategy, in which we pretrain a 3-D model in the source HSI data sets containing a greater number of labeled samples and then transfer it to the target HSI data sets and 2) cross-modal strategy, in which we pretrain a 3-D model in the 2-D RGB image data sets containing a large number of samples and then transfer it to the target HSI data sets. In contrast to previous approaches, we do not impose restrictions over the source data sets, in which they do not have to be collected by the same sensors as the target data sets. Experiments on three public HSI data sets captured by different sensors demonstrate that our model achieves competitive performance for HSI classification compared to several state-of-the-art methodsComment: 16 pages. Accepted to IEEE Trans. Geosci. Remote Sens. Code is available at: https://github.com/hkzhang91/LWNe
    • …
    corecore