3,386 research outputs found

    Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing

    Get PDF
    Successful materials innovations can transform society. However, materials research often involves long timelines and low success probabilities, dissuading investors who have expectations of shorter times from bench to business. A combination of emergent technologies could accelerate the pace of novel materials development by 10x or more, aligning the timelines of stakeholders (investors and researchers), markets, and the environment, while increasing return-on-investment. First, tool automation enables rapid experimental testing of candidate materials. Second, high-throughput computing (HPC) concentrates experimental bandwidth on promising compounds by predicting and inferring bulk, interface, and defect-related properties. Third, machine learning connects the former two, where experimental outputs automatically refine theory and help define next experiments. We describe state-of-the-art attempts to realize this vision and identify resource gaps. We posit that over the coming decade, this combination of tools will transform the way we perform materials research. There are considerable first-mover advantages at stake, especially for grand challenges in energy and related fields, including computing, healthcare, urbanization, water, food, and the environment.Comment: 22 pages, 3 figure

    Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering

    Full text link
    Recently, there has been extensive use of artificial Intelligence (AI) in the field of material engineering. This can be attributed to the development of high performance computing and thereby feasibility to test deep learning models with large parameters. In this article we tried to review some of the latest developments in the applications of AI in material engineering.Comment: V

    Machine learning for accelerating the discovery of high performance low-cost solar cells: a systematic review

    Full text link
    Solar photovoltaic (PV) technology has merged as an efficient and versatile method for converting the Sun's vast energy into electricity. Innovation in developing new materials and solar cell architectures is required to ensure lightweight, portable, and flexible miniaturized electronic devices operate for long periods with reduced battery demand. Recent advances in biomedical implantable and wearable devices have coincided with a growing interest in efficient energy-harvesting solutions. Such devices primarily rely on rechargeable batteries to satisfy their energy needs. Moreover, Artificial Intelligence (AI) and Machine Learning (ML) techniques are touted as game changers in energy harvesting, especially in solar energy materials. In this article, we systematically review a range of ML techniques for optimizing the performance of low-cost solar cells for miniaturized electronic devices. Our systematic review reveals that these ML techniques can expedite the discovery of new solar cell materials and architectures. In particular, this review covers a broad range of ML techniques targeted at producing low-cost solar cells. Moreover, we present a new method of classifying the literature according to data synthesis, ML algorithms, optimization, and fabrication process. In addition, our review reveals that the Gaussian Process Regression (GPR) ML technique with Bayesian Optimization (BO) enables the design of the most promising low-solar cell architecture. Therefore, our review is a critical evaluation of existing ML techniques and is presented to guide researchers in discovering the next generation of low-cost solar cells using ML techniques

    Tailoring complexity for catalyst discovery using physically motivated machine learning

    Get PDF

    Artificial intelligence : A powerful paradigm for scientific research

    Get PDF
    Y Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.Peer reviewe

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent
    • …
    corecore