1,005 research outputs found

    Transductive Multi-View Zero-Shot Learning

    Get PDF
    (c) 2012. The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms

    Transductive Multi-label Zero-shot Learning

    Get PDF
    Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label case, in contrast to the growing popularity and importance of more realistic multi-label data. In this paper, for the first time, we investigate and formalise a general framework for multi-label zero-shot learning, addressing the unique challenge therein: how to exploit multi-label correlation at test time with no training data for those classes? In particular, we propose (1) a multi-output deep regression model to project an image into a semantic word space, which explicitly exploits the correlations in the intermediate semantic layer of word vectors; (2) a novel zero-shot learning algorithm for multi-label data that exploits the unique compositionality property of semantic word vector representations; and (3) a transductive learning strategy to enable the regression model learned from seen classes to generalise well to unseen classes. Our zero-shot learning experiments on a number of standard multi-label datasets demonstrate that our method outperforms a variety of baselines.Comment: 12 pages, 6 figures, Accepted to BMVC 2014 (oral

    MEG Decoding Across Subjects

    Full text link
    Brain decoding is a data analysis paradigm for neuroimaging experiments that is based on predicting the stimulus presented to the subject from the concurrent brain activity. In order to make inference at the group level, a straightforward but sometimes unsuccessful approach is to train a classifier on the trials of a group of subjects and then to test it on unseen trials from new subjects. The extreme difficulty is related to the structural and functional variability across the subjects. We call this approach "decoding across subjects". In this work, we address the problem of decoding across subjects for magnetoencephalographic (MEG) experiments and we provide the following contributions: first, we formally describe the problem and show that it belongs to a machine learning sub-field called transductive transfer learning (TTL). Second, we propose to use a simple TTL technique that accounts for the differences between train data and test data. Third, we propose the use of ensemble learning, and specifically of stacked generalization, to address the variability across subjects within train data, with the aim of producing more stable classifiers. On a face vs. scramble task MEG dataset of 16 subjects, we compare the standard approach of not modelling the differences across subjects, to the proposed one of combining TTL and ensemble learning. We show that the proposed approach is consistently more accurate than the standard one
    • …
    corecore