2,308 research outputs found

    Bayesian Transductive Markov Random Fields for Interactive Segmentation in Retinal Disorders

    Get PDF
    In the realm of computer aided diagnosis (CAD) interactive segmentation schemes have been well received by physicians, where the combination of human and machine intelligence can provide improved segmentation efficacy with minimal expert intervention [1-3]. Transductive learning (TL) or semi-supervised learning (SSL) is a suitable framework for learning-based interactive segmentation given the scarce label problem. In this paper we present extended work on Bayesian transduction and regularized conditional mixtures for interactive segmentation [3]. We present a Markov random field model integrating a semi-parametric conditional mixture model within a Bayesian transductive learning and inference setting. The model allows efficient learning and inference in a semi-supervised setting given only minimal approximate label information. Preliminary experimental results on multimodal images of retinal disorders such as drusen, geographic atrophy (GA), and choroidal neovascularisation (CNV) with exudates and subretinal fibrosis show promising segmentation performance

    Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking

    No full text
    We consider the general problem of learning from labeled and unlabeled data, which is often called semi-supervised learning or transductive inference. A principled approach to semi-supervised learning is to design a classifying function which is sufficiently smooth with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data

    Discrete-Continuous ADMM for Transductive Inference in Higher-Order MRFs

    Full text link
    This paper introduces a novel algorithm for transductive inference in higher-order MRFs, where the unary energies are parameterized by a variable classifier. The considered task is posed as a joint optimization problem in the continuous classifier parameters and the discrete label variables. In contrast to prior approaches such as convex relaxations, we propose an advantageous decoupling of the objective function into discrete and continuous subproblems and a novel, efficient optimization method related to ADMM. This approach preserves integrality of the discrete label variables and guarantees global convergence to a critical point. We demonstrate the advantages of our approach in several experiments including video object segmentation on the DAVIS data set and interactive image segmentation
    • …
    corecore