67 research outputs found

    Mutual information based feature subset selection in multivariate time series classification

    Get PDF
    This paper deals with supervised classification of multivariate time se- ries. In particular, the goal is to propose a filter method to select a subset of time series. Consequently, we adopt the framework proposed by Brown et al. [10]. The key point in this framework is the computation of the mutual information between the features, which allows us to measure the relevance of each feature subset. In our case, where the features are a time series, we use an adaptation of existing nonparametric mutual infor- mation estimators based on the k-nearest neighbor. Specifically, for the purpose of bringing these methods to the time series scenario, we rely on the use of dynamic time warping dissimilarity. Our experimental results show that our method is able to strongly reduce the number of time series while keeping or increasing the classification accuracy.Grant agreement no. KK-2019/00095 IT1244-19 TIN2016-78365-R PID2019-104966GB-I0

    Scalable computing for earth observation - Application on Sea Ice analysis

    Get PDF
    In recent years, Deep learning (DL) networks have shown considerable improvements and have become a preferred methodology in many different applications. These networks have outperformed other classical techniques, particularly in large data settings. In earth observation from the satellite field, for example, DL algorithms have demonstrated the ability to learn complicated nonlinear relationships in input data accurately. Thus, it contributed to advancement in this field. However, the training process of these networks has heavy computational overheads. The reason is two-fold: The sizable complexity of these networks and the high number of training samples needed to learn all parameters comprising these architectures. Although the quantity of training data enhances the accuracy of the trained models in general, the computational cost may restrict the amount of analysis that can be done. This issue is particularly critical in satellite remote sensing, where a myriad of satellites generate an enormous amount of data daily, and acquiring in-situ ground truth for building a large training dataset is a fundamental prerequisite. This dissertation considers various aspects of deep learning based sea ice monitoring from SAR data. In this application, labeling data is very costly and time-consuming. Also, in some cases, it is not even achievable due to challenges in establishing the required domain knowledge, specifically when it comes to monitoring Arctic Sea ice with Synthetic Aperture Radar (SAR), which is the application domain of this thesis. Because the Arctic is remote, has long dark seasons, and has a very dynamic weather system, the collection of reliable in-situ data is very demanding. In addition to the challenges of interpreting SAR data of sea ice, this issue makes SAR-based sea ice analysis with DL networks a complicated process. We propose novel DL methods to cope with the problems of scarce training data and address the computational cost of the training process. We analyze DL network capabilities based on self-designed architectures and learn strategies, such as transfer learning for sea ice classification. We also address the scarcity of training data by proposing a novel deep semi-supervised learning method based on SAR data for incorporating unlabeled data information into the training process. Finally, a new distributed DL method that can be used in a semi-supervised manner is proposed to address the computational complexity of deep neural network training

    An uncertainty prediction approach for active learning - application to earth observation

    Get PDF
    Mapping land cover and land usage dynamics are crucial in remote sensing since farmers are encouraged to either intensify or extend crop use due to the ongoing rise in the world’s population. A major issue in this area is interpreting and classifying a scene captured in high-resolution satellite imagery. Several methods have been put forth, including neural networks which generate data-dependent models (i.e. model is biased toward data) and static rule-based approaches with thresholds which are limited in terms of diversity(i.e. model lacks diversity in terms of rules). However, the problem of having a machine learning model that, given a large amount of training data, can classify multiple classes over different geographic Sentinel-2 imagery that out scales existing approaches remains open. On the other hand, supervised machine learning has evolved into an essential part of many areas due to the increasing number of labeled datasets. Examples include creating classifiers for applications that recognize images and voices, anticipate traffic, propose products, act as a virtual personal assistant and detect online fraud, among many more. Since these classifiers are highly dependent from the training datasets, without human interaction or accurate labels, the performance of these generated classifiers with unseen observations is uncertain. Thus, researchers attempted to evaluate a number of independent models using a statistical distance. However, the problem of, given a train-test split and classifiers modeled over the train set, identifying a prediction error using the relation between train and test sets remains open. Moreover, while some training data is essential for supervised machine learning, what happens if there is insufficient labeled data? After all, assigning labels to unlabeled datasets is a time-consuming process that may need significant expert human involvement. When there aren’t enough expert manual labels accessible for the vast amount of openly available data, active learning becomes crucial. However, given a large amount of training and unlabeled datasets, having an active learning model that can reduce the training cost of the classifier and at the same time assist in labeling new data points remains an open problem. From the experimental approaches and findings, the main research contributions, which concentrate on the issue of optical satellite image scene classification include: building labeled Sentinel-2 datasets with surface reflectance values; proposal of machine learning models for pixel-based image scene classification; proposal of a statistical distance based Evidence Function Model (EFM) to detect ML models misclassification; and proposal of a generalised sampling approach for active learning that, together with the EFM enables a way of determining the most informative examples. Firstly, using a manually annotated Sentinel-2 dataset, Machine Learning (ML) models for scene classification were developed and their performance was compared to Sen2Cor the reference package from the European Space Agency – a micro-F1 value of 84% was attained by the ML model, which is a significant improvement over the corresponding Sen2Cor performance of 59%. Secondly, to quantify the misclassification of the ML models, the Mahalanobis distance-based EFM was devised. This model achieved, for the labeled Sentinel-2 dataset, a micro-F1 of 67.89% for misclassification detection. Lastly, EFM was engineered as a sampling strategy for active learning leading to an approach that attains the same level of accuracy with only 0.02% of the total training samples when compared to a classifier trained with the full training set. With the help of the above-mentioned research contributions, we were able to provide an open-source Sentinel-2 image scene classification package which consists of ready-touse Python scripts and a ML model that classifies Sentinel-2 L1C images generating a 20m-resolution RGB image with the six studied classes (Cloud, Cirrus, Shadow, Snow, Water, and Other) giving academics a straightforward method for rapidly and effectively classifying Sentinel-2 scene images. Additionally, an active learning approach that uses, as sampling strategy, the observed prediction uncertainty given by EFM, will allow labeling only the most informative points to be used as input to build classifiers; Sumário: Uma Abordagem de Previsão de Incerteza para Aprendizagem Ativa – Aplicação à Observação da Terra O mapeamento da cobertura do solo e a dinâmica da utilização do solo são cruciais na deteção remota uma vez que os agricultores são incentivados a intensificar ou estender as culturas devido ao aumento contínuo da população mundial. Uma questão importante nesta área é interpretar e classificar cenas capturadas em imagens de satélite de alta resolução. Várias aproximações têm sido propostas incluindo a utilização de redes neuronais que produzem modelos dependentes dos dados (ou seja, o modelo é tendencioso em relação aos dados) e aproximações baseadas em regras que apresentam restrições de diversidade (ou seja, o modelo carece de diversidade em termos de regras). No entanto, a criação de um modelo de aprendizagem automática que, dada uma uma grande quantidade de dados de treino, é capaz de classificar, com desempenho superior, as imagens do Sentinel-2 em diferentes áreas geográficas permanece um problema em aberto. Por outro lado, têm sido utilizadas técnicas de aprendizagem supervisionada na resolução de problemas nas mais diversas áreas de devido à proliferação de conjuntos de dados etiquetados. Exemplos disto incluem classificadores para aplicações que reconhecem imagem e voz, antecipam tráfego, propõem produtos, atuam como assistentes pessoais virtuais e detetam fraudes online, entre muitos outros. Uma vez que estes classificadores são fortemente dependente do conjunto de dados de treino, sem interação humana ou etiquetas precisas, o seu desempenho sobre novos dados é incerta. Neste sentido existem propostas para avaliar modelos independentes usando uma distância estatística. No entanto, o problema de, dada uma divisão de treino-teste e um classificador, identificar o erro de previsão usando a relação entre aqueles conjuntos, permanece aberto. Mais ainda, embora alguns dados de treino sejam essenciais para a aprendizagem supervisionada, o que acontece quando a quantidade de dados etiquetados é insuficiente? Afinal, atribuir etiquetas é um processo demorado e que exige perícia, o que se traduz num envolvimento humano significativo. Quando a quantidade de dados etiquetados manualmente por peritos é insuficiente a aprendizagem ativa torna-se crucial. No entanto, dada uma grande quantidade dados de treino não etiquetados, ter um modelo de aprendizagem ativa que reduz o custo de treino do classificador e, ao mesmo tempo, auxilia a etiquetagem de novas observações permanece um problema em aberto. A partir das abordagens e estudos experimentais, as principais contribuições deste trabalho, que se concentra na classificação de cenas de imagens de satélite óptico incluem: criação de conjuntos de dados Sentinel-2 etiquetados, com valores de refletância de superfície; proposta de modelos de aprendizagem automática baseados em pixels para classificação de cenas de imagens de satétite; proposta de um Modelo de Função de Evidência (EFM) baseado numa distância estatística para detetar erros de classificação de modelos de aprendizagem; e proposta de uma abordagem de amostragem generalizada para aprendizagem ativa que, em conjunto com o EFM, possibilita uma forma de determinar os exemplos mais informativos. Em primeiro lugar, usando um conjunto de dados Sentinel-2 etiquetado manualmente, foram desenvolvidos modelos de Aprendizagem Automática (AA) para classificação de cenas e seu desempenho foi comparado com o do Sen2Cor – o produto de referência da Agência Espacial Europeia – tendo sido alcançado um valor de micro-F1 de 84% pelo classificador, o que representa uma melhoria significativa em relação ao desempenho Sen2Cor correspondente, de 59%. Em segundo lugar, para quantificar o erro de classificação dos modelos de AA, foi concebido o Modelo de Função de Evidência baseado na distância de Mahalanobis. Este modelo conseguiu, para o conjunto de dados etiquetado do Sentinel-2 um micro-F1 de 67,89% na deteção de classificação incorreta. Por fim, o EFM foi utilizado como uma estratégia de amostragem para a aprendizagem ativa, uma abordagem que permitiu atingir o mesmo nível de desempenho com apenas 0,02% do total de exemplos de treino quando comparado com um classificador treinado com o conjunto de treino completo. Com a ajuda das contribuições acima mencionadas, foi possível desenvolver um pacote de código aberto para classificação de cenas de imagens Sentinel-2 que, utilizando num conjunto de scripts Python, um modelo de classificação, e uma imagem Sentinel-2 L1C, gera a imagem RGB correspondente (com resolução de 20m) com as seis classes estudadas (Cloud, Cirrus, Shadow, Snow, Water e Other), disponibilizando à academia um método direto para a classificação de cenas de imagens do Sentinel-2 rápida e eficaz. Além disso, a abordagem de aprendizagem ativa que usa, como estratégia de amostragem, a deteção de classificacão incorreta dada pelo EFM, permite etiquetar apenas os pontos mais informativos a serem usados como entrada na construção de classificadores

    Deep learning for automobile predictive maintenance under Industry 4.0

    Get PDF
    Industry 4.0 refers to the fourth industrial revolution, which has boosted the development of the world. An important target of Industry 4.0 is to maximize the asset uptime so to improve productivity and reduce the production and maintenance cost. The emerging techniques such as artificial intelligence (AI), industrial Internet of things (IIoT) and cyber-physical system (CPS) have accelerated the development of data-orientated application such as predictive maintenance (PdM). Maintenance is a big concern for an automobile fleet management company. An accurate maintenance prediction can be helpful to avoid critical failure and avoid further loss. Deep learning is a type of prevailing machine learning algorithm which has been widely used in big data analytics. However, how to establish a maintenance prediction model based on historical maintenance data using deep learning has not been investigated. Moreover, it is worthwhile to study how to build a prediction model when the labelled data is insufficient. Furthermore, surrounding factors which may impact automobile lifecycle have not been concerned in the state-of-the-art. Hence, this thesis will focus on how to pave the way for automobile PdM under Industry 4.0. This research is structured according to four themes. Firstly, different from the conventional PdM research that only focuses on modelling based on sensor data or historical maintenance data, a framework for automobile PdM based on multi-source data is proposed. The proposed framework aims at automobile TBF modelling, prediction, and decision support based on the multi-source data. There are five layers designed in this framework, which are data collection, cloud data transmission and storage, data mapping, pre-processing and integration, deep learning for automobile TBF modelling, and decision support for PdM. This framework covers the entire knowledge discovery process from data collection to decision support. Secondly, one of the purposes of this thesis is to establish a Time-Between-Failure (TBF) prediction model through a data-driven approach. An accurate automobile TBF iv Abstract prediction can bring tangible benefits to a fleet management company. Different from the existing studies that adopted sensor data for failure time prediction, a new approach called Cox proportional hazard deep learning (CoxPHDL) is proposed based on the historical maintenance data for TBF modelling and prediction. CoxPHDL is able to tackle the data sparsity and data censoring issues that are common in the analysis of historical maintenance data. Firstly, an autoencoder is adopted to convert the nominal data into a robust representation. Secondly, a Cox PHM is researched to estimate the TBF of the censored data. A long-short-term memory (LSTM) network is then established to train the TBF prediction model based on the pre-processed maintenance data. Experimental results have demonstrated the merits of the proposed approach. Thirdly, a large amount of labelled data is one of the critical factors to the satisfactory algorithm performance of deep learning. However, labelled data is expensive to collect in the real world. In order to build a TBF prediction model using deep learning when the labelled data is limited, a new semi-supervised learning algorithm called deep learning embedded semi-supervised learning (DLeSSL) is proposed. Based on DLeSSL, unlabelled data can be estimated using a semi-supervised learning approach that has a deep learning technique embedded so to expand the labelled dataset. Results derived using the proposed method reveal that deep learning (DLeSSL based) outperforms the benchmarking algorithms when the labelled data is limited. In addition, different from existing studies, the effect on algorithm performance due to the size of labelled data and unlabelled data is reported to offer insights for the deployment of DLeSSL. Finally, automobile lifecycle can be impacted by surrounding factors such as weather, traffic, and terrain. The data contains these factors can be collected and processed via geographical information system (GIS). To introduce these GIS data into automobile TBF modelling, an integrated approach is proposed. This is the first time that the surrounding factors are considered in the study of automobile TBF modelling. Meanwhile, in order to build a TBF prediction model based on multi-source data, a new deep learning architecture called merged-LSTM (M-LSTM) network is designed. Abstract v Experimental results derived using the proposed approach and M-LSTM network reveal the impacts of the GIS factors. This thesis aims to research automobile PdM using deep learning, which provides a feasibility study for achieving Industry 4.0. As such, it offers great potential as a route to achieving a more profitable, efficient, and sustainable fleet management

    The blessings of explainable AI in operations & maintenance of wind turbines

    Get PDF
    Wind turbines play an integral role in generating clean energy, but regularly suffer from operational inconsistencies and failures leading to unexpected downtimes and significant Operations & Maintenance (O&M) costs. Condition-Based Monitoring (CBM) has been utilised in the past to monitor operational inconsistencies in turbines by applying signal processing techniques to vibration data. The last decade has witnessed growing interest in leveraging Supervisory Control & Acquisition (SCADA) data from turbine sensors towards CBM. Machine Learning (ML) techniques have been utilised to predict incipient faults in turbines and forecast vital operational parameters with high accuracy by leveraging SCADA data and alarm logs. More recently, Deep Learning (DL) methods have outperformed conventional ML techniques, particularly for anomaly prediction. Despite demonstrating immense promise in transitioning to Artificial Intelligence (AI), such models are generally black-boxes that cannot provide rationales behind their predictions, hampering the ability of turbine operators to rely on automated decision making. We aim to help combat this challenge by providing a novel perspective on Explainable AI (XAI) for trustworthy decision support.This thesis revolves around three key strands of XAI – DL, Natural Language Generation (NLG) and Knowledge Graphs (KGs), which are investigated by utilising data from an operational turbine. We leverage DL and NLG to predict incipient faults and alarm events in the turbine in natural language as well as generate human-intelligible O&M strategies to assist engineers in fixing/averting the faults. We also propose specialised DL models which can predict causal relationships in SCADA features as well as quantify the importance of vital parameters leading to failures. The thesis finally culminates with an interactive Question- Answering (QA) system for automated reasoning that leverages multimodal domain-specific information from a KG, facilitating engineers to retrieve O&M strategies with natural language questions. By helping make turbines more reliable, we envisage wider adoption of wind energy sources towards tackling climate change

    A Comprehensive Survey on Deep Graph Representation Learning

    Full text link
    Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields, including machine learning and data mining. Classic graph embedding methods follow the basic idea that the embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i) traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii) representation learning and downstream tasks are dependent on each other which should be jointly enhanced. With the remarkable success of deep learning, deep graph representation learning has shown great potential and advantages over shallow (traditional) methods, there exist a large number of deep graph representation learning techniques have been proposed in the past decade, especially graph neural networks. In this survey, we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential components of graph representation learning and categorize existing approaches by the ways of graph neural network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides the practical and promising applications of deep graph representation learning. Last but not least, we state new perspectives and suggest challenging directions which deserve further investigations in the future

    Probabilistic forecasting and comparative model assessment, with focus on extreme events

    Get PDF
    Probabilistic forecasts allow to quantify the prediction uncertainty and are essential for informed decision making. We investigate how to evaluate probabilistic forecasts with an emphasis on extreme events, and how to make and evaluate forecasts based on simulation output in Bayesian forecasting models. Further, we propose new models and estimation approaches for statistical post-processing of ensemble forecasts in numerical weather prediction

    Discriminative, generative, and imitative learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (leaves 201-212).I propose a common framework that combines three different paradigms in machine learning: generative, discriminative and imitative learning. A generative probabilistic distribution is a principled way to model many machine learning and machine perception problems. Therein, one provides domain specific knowledge in terms of structure and parameter priors over the joint space of variables. Bayesian networks and Bayesian statistics provide a rich and flexible language for specifying this knowledge and subsequently refining it with data and observations. The final result is a distribution that is a good generator of novel exemplars. Conversely, discriminative algorithms adjust a possibly non-distributional model to data optimizing for a specific task, such as classification or prediction. This typically leads to superior performance yet compromises the flexibility of generative modeling. I present Maximum Entropy Discrimination (MED) as a framework to combine both discriminative estimation and generative probability densities. Calculations involve distributions over parameters, margins, and priors and are provably and uniquely solvable for the exponential family. Extensions include regression, feature selection, and transduction. SVMs are also naturally subsumed and can be augmented with, for example, feature selection, to obtain substantial improvements. To extend to mixtures of exponential families, I derive a discriminative variant of the Expectation-Maximization (EM) algorithm for latent discriminative learning (or latent MED).(cont.) While EM and Jensen lower bound log-likelihood, a dual upper bound is made possible via a novel reverse-Jensen inequality. The variational upper bound on latent log-likelihood has the same form as EM bounds, is computable efficiently and is globally guaranteed. It permits powerful discriminative learning with the wide range of contemporary probabilistic mixture models (mixtures of Gaussians, mixtures of multinomials and hidden Markov models). We provide empirical results on standardized data sets that demonstrate the viability of the hybrid discriminative-generative approaches of MED and reverse-Jensen bounds over state of the art discriminative techniques or generative approaches. Subsequently, imitative learning is presented as another variation on generative modeling which also learns from exemplars from an observed data source. However, the distinction is that the generative model is an agent that is interacting in a much more complex surrounding external world. It is not efficient to model the aggregate space in a generative setting. I demonstrate that imitative learning (under appropriate conditions) can be adequately addressed as a discriminative prediction task which outperforms the usual generative approach. This discriminative-imitative learning approach is applied with a generative perceptual system to synthesize a real-time agent that learns to engage in social interactive behavior.by Tony Jebara.Ph.D
    • …
    corecore