31 research outputs found

    Graph Neural Networks and its applications

    Get PDF
    This project will explore some of the most prominent Graph Neural Network variants and apply them to two tasks: approximation of the community detection Girvan-Newman algorithm and compiled code snippet classification

    Learning Effective Embeddings for Dynamic Graphs and Quantifying Graph Embedding Interpretability

    Get PDF
    Graph representation learning has been a very active research area in recent years. The goal of graph representation learning is to generate representation vectors that accurately capture the structure and features of large graphs. This is especially important because the quality of the graph representation vectors will affect the performance of these vectors in downstream tasks such as node classification and link prediction. Many techniques have been proposed for generating effective graph representation vectors. These methods can be applied to both static and dynamic graphs. A static graph is a single fixed graph, while a dynamic graph evolves over time, and its nodes and edges can be added or deleted from the graph. We surveyed the graph embedding methods for both static and dynamic graphs. The majority of the existing graph embedding methods are developed for static graphs. Therefore, since most real-world graphs are dynamic, developing novel graph embedding methods suitable for evolving graphs is essential. This dissertation proposes three dynamic graph embedding models. In previous dynamic methods, the inputs were mainly adjacency matrices of graphs which are not memory efficient and may not capture the neighbourhood structure in graphs effectively. Therefore, we developed Dynnode2vec based on random walks using the static model Node2vec. Dynnode2vec generates node embeddings in each snapshot by initializing the current model with previous embedding vectors and training the model using a set of random walks obtained for nodes in the snapshot. Our second model, LSTM-Node2vec, is also based on random walks. This method leverages the LSTM model to capture the long-range dependencies between nodes in combination with Node2vec to generate node embeddings. Finally, inspired by the importance of substructures in the graphs, our third model TGR-Clique generates node embeddings by considering the effects of neighbours of a node in the maximal cliques containing the node. Experiments on real-world datasets demonstrate the effectiveness of our proposed methods in comparison to the state-of-the-art models. In addition, motivated by the lack of proper measures for quantifying and comparing graph embeddings interpretability, we proposed two interpretability measures for graph embeddings using the centrality properties of graphs

    Unsupervised Structural Embedding Methods for Efficient Collective Network Mining

    Full text link
    How can we align accounts of the same user across social networks? Can we identify the professional role of an email user from their patterns of communication? Can we predict the medical effects of chemical compounds from their atomic network structure? Many problems in graph data mining, including all of the above, are defined on multiple networks. The central element to all of these problems is cross-network comparison, whether at the level of individual nodes or entities in the network or at the level of entire networks themselves. To perform this comparison meaningfully, we must describe the entities in each network expressively in terms of patterns that generalize across the networks. Moreover, because the networks in question are often very large, our techniques must be computationally efficient. In this thesis, we propose scalable unsupervised methods that embed nodes in vector space by mapping nodes with similar structural roles in their respective networks, even if they come from different networks, to similar parts of the embedding space. We perform network alignment by matching nodes across two or more networks based on the similarity of their embeddings, and refine this process by reinforcing the consistency of each nodeโ€™s alignment with those of its neighbors. By characterizing the distribution of node embeddings in a graph, we develop graph-level feature vectors that are highly effective for graph classification. With principled sparsification and randomized approximation techniques, we make all our methods computationally efficient and able to scale to graphs with millions of nodes or edges. We demonstrate the effectiveness of structural node embeddings on industry-scale applications, and propose an extensive set of embedding evaluation techniques that lay the groundwork for further methodological development and application.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162895/1/mheimann_1.pd

    Genetic Meta-Structure Search for Recommendation on Heterogeneous Information Network

    Full text link
    In the past decade, the heterogeneous information network (HIN) has become an important methodology for modern recommender systems. To fully leverage its power, manually designed network templates, i.e., meta-structures, are introduced to filter out semantic-aware information. The hand-crafted meta-structure rely on intense expert knowledge, which is both laborious and data-dependent. On the other hand, the number of meta-structures grows exponentially with its size and the number of node types, which prohibits brute-force search. To address these challenges, we propose Genetic Meta-Structure Search (GEMS) to automatically optimize meta-structure designs for recommendation on HINs. Specifically, GEMS adopts a parallel genetic algorithm to search meaningful meta-structures for recommendation, and designs dedicated rules and a meta-structure predictor to efficiently explore the search space. Finally, we propose an attention based multi-view graph convolutional network module to dynamically fuse information from different meta-structures. Extensive experiments on three real-world datasets suggest the effectiveness of GEMS, which consistently outperforms all baseline methods in HIN recommendation. Compared with simplified GEMS which utilizes hand-crafted meta-paths, GEMS achieves over 6%6\% performance gain on most evaluation metrics. More importantly, we conduct an in-depth analysis on the identified meta-structures, which sheds light on the HIN based recommender system design.Comment: Published in Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20

    ๋™์ข…, ์ด์ข…, ๊ทธ๋ฆฌ๊ณ  ๋‚˜๋ฌด ํ˜•ํƒœ์˜ ๊ทธ๋ž˜ํ”„๋ฅผ ์œ„ํ•œ ๋น„์ง€๋„ ํ‘œํ˜„ ํ•™์Šต

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ์ตœ์ง„์˜.๊ทธ๋ž˜ํ”„ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๋น„์ง€๋„ ํ‘œํ˜„ ํ•™์Šต์˜ ๋ชฉ์ ์€ ๊ทธ๋ž˜ํ”„์˜ ๊ตฌ์กฐ์™€ ๋…ธ๋“œ์˜ ์†์„ฑ์„ ์ž˜ ๋ฐ˜์˜ํ•˜๋Š” ์œ ์šฉํ•œ ๋…ธ๋“œ ๋‹จ์œ„ ํ˜น์€ ๊ทธ๋ž˜ํ”„ ๋‹จ์œ„์˜ ๋ฒกํ„ฐ ํ˜•ํƒœ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ์ตœ๊ทผ, ๊ทธ๋ž˜ํ”„ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๊ฐ•๋ ฅํ•œ ํ‘œํ˜„ ํ•™์Šต ๋Šฅ๋ ฅ์„ ๊ฐ–์ถ˜ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•œ ๋น„์ง€๋„ ๊ทธ๋ž˜ํ”„ ํ‘œํ˜„ ํ•™์Šต ๋ชจ๋ธ์˜ ์„ค๊ณ„๊ฐ€ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋งŽ์€ ๋ฐฉ๋ฒ•๋“ค์€ ํ•œ ์ข…๋ฅ˜์˜ ์—ฃ์ง€์™€ ํ•œ ์ข…๋ฅ˜์˜ ๋…ธ๋“œ๊ฐ€ ์กด์žฌํ•˜๋Š” ๋™์ข… ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ํ•™์Šต์— ์ง‘์ค‘์„ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ ์ด ์„ธ์ƒ์— ์ˆ˜๋งŽ์€ ์ข…๋ฅ˜์˜ ๊ด€๊ณ„๊ฐ€ ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๊ทธ๋ž˜ํ”„ ๋˜ํ•œ ๊ตฌ์กฐ์ , ์˜๋ฏธ๋ก ์  ์†์„ฑ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ข…๋ฅ˜๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ, ๊ทธ๋ž˜ํ”„๋กœ๋ถ€ํ„ฐ ์œ ์šฉํ•œ ํ‘œํ˜„์„ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋น„์ง€๋„ ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ž…๋ ฅ ๊ทธ๋ž˜ํ”„์˜ ํŠน์ง•์„ ์ œ๋Œ€๋กœ ๊ณ ๋ คํ•ด์•ผ๋งŒ ํ•œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋„๋ฆฌ ์ ‘ํ•  ์ˆ˜ ์žˆ๋Š” ์„ธ๊ฐ€์ง€ ๊ทธ๋ž˜ํ”„ ๊ตฌ์กฐ์ธ ๋™์ข… ๊ทธ๋ž˜ํ”„, ํŠธ๋ฆฌ ํ˜•ํƒœ์˜ ๊ทธ๋ž˜ํ”„, ๊ทธ๋ฆฌ๊ณ  ์ด์ข… ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์„ ํ™œ์šฉํ•˜๋Š” ๋น„์ง€๋„ ํ•™์Šต ๋ชจ๋ธ๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒ˜์Œ์œผ๋กœ, ์šฐ๋ฆฌ๋Š” ๋™์ข… ๊ทธ๋ž˜ํ”„์˜ ๋…ธ๋“œ์— ๋Œ€ํ•˜์—ฌ ์ €์ฐจ์› ํ‘œํ˜„์„ ํ•™์Šตํ•˜๋Š” ๊ทธ๋ž˜ํ”„ ์ปจ๋ณผ๋ฃจ์…˜ ์˜คํ† ์ธ์ฝ”๋” ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๊ธฐ์กด์˜ ๊ทธ๋ž˜ํ”„ ์˜คํ† ์ธ์ฝ”๋”๋Š” ๊ตฌ์กฐ์˜ ์ „์ฒด๊ฐ€ ํ•™์Šต์ด ๋ถˆ๊ฐ€๋Šฅํ•ด์„œ ์ œํ•œ์ ์ธ ํ‘œํ˜„ ํ•™์Šต ๋Šฅ๋ ฅ์„ ๊ฐ€์งˆ ์ˆ˜ ์žˆ๋Š” ๋ฐ˜๋ฉด์—, ์ œ์•ˆํ•˜๋Š” ์˜คํ† ์ธ์ฝ”๋”๋Š” ๋…ธ๋“œ์˜ ํ”ผ์ณ๋ฅผ ๋ณต์›ํ•˜๋ฉฐ,๊ตฌ์กฐ์˜ ์ „์ฒด๊ฐ€ ํ•™์Šต์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋…ธ๋“œ์˜ ํ”ผ์ณ๋ฅผ ๋ณต์›ํ•˜๊ธฐ ์œ„ํ•ด์„œ, ์šฐ๋ฆฌ๋Š” ์ธ์ฝ”๋” ๋ถ€๋ถ„์˜ ์—ญํ• ์ด ์ด์›ƒํ•œ ๋…ธ๋“œ๋ผ๋ฆฌ ์œ ์‚ฌํ•œ ํ‘œํ˜„์„ ๊ฐ€์ง€๊ฒŒ ํ•˜๋Š” ๋ผํ”Œ๋ผ์‹œ์•ˆ ์Šค๋ฌด๋”ฉ์ด๋ผ๋Š” ๊ฒƒ์— ์ฃผ๋ชฉํ•˜์—ฌ ๋””์ฝ”๋” ๋ถ€๋ถ„์—์„œ๋Š” ์ด์›ƒ ๋…ธ๋“œ์˜ ํ‘œํ˜„๊ณผ ๋ฉ€์–ด์ง€๊ฒŒ ํ•˜๋Š” ๋ผํ”Œ๋ผ์‹œ์•ˆ ์ƒคํ”„๋‹์„ ํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ผํ”Œ๋ผ์‹œ์•ˆ ์ƒคํ”„๋‹์„ ๊ทธ๋Œ€๋กœ ์ ์šฉํ•˜๋ฉด ๋ถˆ์•ˆ์ •์„ฑ์„ ์œ ๋ฐœํ•  ์ˆ˜ ์žˆ๊ธฐ ๋•Œ๋ฌธ์—, ์—ฃ์ง€์˜ ๊ฐ€์ค‘์น˜ ๊ฐ’์— ์Œ์˜ ๊ฐ’์„ ์ค„ ์ˆ˜ ์žˆ๋Š” ๋ถ€ํ˜ธํ˜• ๊ทธ๋ž˜ํ”„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์•ˆ์ •์ ์ธ ๋ผํ”Œ๋ผ์‹œ์•ˆ ์ƒคํ”„๋‹์˜ ํ˜•ํƒœ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋™์ข… ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ๋…ธ๋“œ ํด๋Ÿฌ์Šคํ„ฐ๋ง๊ณผ ๋งํฌ ์˜ˆ์ธก ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์•ˆ์ •์ ์œผ๋กœ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘˜์งธ๋กœ, ์šฐ๋ฆฌ๋Š” ํŠธ๋ฆฌ์˜ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง€๋Š” ๊ณ„์ธต์ ์ธ ๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๊ทธ๋ž˜ํ”„์˜ ๋…ธ๋“œ ํ‘œํ˜„์„ ์ •ํ™•ํ•˜๊ฒŒ ํ•™์Šตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์Œ๊ณก์„  ๊ณต๊ฐ„์—์„œ ๋™์ž‘ํ•˜๋Š” ์˜คํ† ์ธ์ฝ”๋” ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์œ ํด๋ฆฌ๋””์–ธ ๊ณต๊ฐ„์€ ํŠธ๋ฆฌ๋ฅผ ์‚ฌ์ƒํ•˜๊ธฐ์— ๋ถ€์ ์ ˆํ•˜๋‹ค๋Š” ์ตœ๊ทผ์˜ ๋ถ„์„์„ ํ†ตํ•˜์—ฌ, ์Œ๊ณก์„  ๊ณต๊ฐ„์—์„œ ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์˜ ๋ ˆ์ด์–ด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋…ธ๋“œ์˜ ์ €์ฐจ์› ํ‘œํ˜„์„ ํ•™์Šตํ•˜๊ฒŒ ๋œ๋‹ค. ์ด ๋•Œ, ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง์ด ์Œ๊ณก์„  ๊ธฐํ•˜ํ•™์—์„œ ๊ณ„์ธต ์ •๋ณด๋ฅผ ๋‹ด๊ณ  ์žˆ๋Š” ๊ฑฐ๋ฆฌ์˜ ๊ฐ’์„ ํ™œ์šฉํ•˜์—ฌ ๋…ธ๋“œ์˜ ์ด์›ƒ์‚ฌ์ด์˜ ์ค‘์š”๋„๋ฅผ ํ™œ์šฉํ•˜๋„๋ก ์„ค๊ณ„ํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ๋…ผ๋ฌธ ์ธ์šฉ ๊ด€๊ณ„ ๋„คํŠธ์›Œํฌ, ๊ณ„ํ†ต๋„, ์ด๋ฏธ์ง€ ์‚ฌ์ด์˜ ๋„คํŠธ์›Œํฌ๋“ฑ์— ๋Œ€ํ•ด ์ œ์•ˆํ•œ ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ๋…ธ๋“œ ํด๋Ÿฌ์Šคํ„ฐ๋ง๊ณผ ๋งํฌ ์˜ˆ์ธก ์‹คํ—˜์„ ํ•˜์˜€์œผ๋ฉฐ, ํŠธ๋ฆฌ์˜ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง€๋Š” ๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•ด์„œ ์ œ์•ˆํ•œ ๋ชจ๋ธ์ด ์œ ํด๋ฆฌ๋””์–ธ ๊ณต๊ฐ„์—์„œ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ชจ๋ธ์— ๋น„ํ•ด ํ–ฅ์ƒ๋œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์šฐ๋ฆฌ๋Š” ์—ฌ๋Ÿฌ ์ข…๋ฅ˜์˜ ๋…ธ๋“œ์™€ ์—ฃ์ง€๋ฅผ ๊ฐ€์ง€๋Š” ์ด์ข…๊ทธ๋ž˜ํ”„์— ๋Œ€ํ•œ ๋Œ€์กฐ ํ•™์Šต ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๊ธฐ์กด์˜ ๋ฐฉ๋ฒ•๋“ค์ด ํ•™์Šตํ•˜๊ธฐ ์ด์ „์— ์ถฉ๋ถ„ํ•œ ๋„๋ฉ”์ธ ์ง€์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ์„ค๊ณ„ํ•œ ๋ฉ”ํƒ€ํŒจ์Šค๋‚˜ ๋ฉ”ํƒ€๊ทธ๋ž˜ํ”„์— ์˜์กดํ•œ๋‹ค๋Š” ๋‹จ์ ๊ณผ ๋งŽ์€ ์ด์ข…๊ทธ๋ž˜ํ”„์˜ ์—ฃ์ง€๊ฐ€ ๋‹ค๋ฅธ ๋…ธ๋“œ ์ข…๋ฅ˜์‚ฌ์ด์˜ ๊ด€๊ณ„์— ์ง‘์ค‘ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ์ ์„ ์ฃผ๋ชฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์šฐ๋ฆฌ๋Š” ์‚ฌ์ „๊ณผ์ •์ด ํ•„์š”์—†์œผ๋ฉฐ ๋‹ค๋ฅธ ์ข…๋ฅ˜ ์‚ฌ์ด์˜ ๊ด€๊ณ„์— ๋”ํ•˜์—ฌ ๊ฐ™์€ ์ข…๋ฅ˜ ์‚ฌ์ด์˜ ๊ด€๊ณ„๋„ ๋™์‹œ์— ํšจ์œจ์ ์œผ๋กœ ํ•™์Šตํ•˜๊ฒŒ ํ•˜๋Š” ๋ฉ”ํƒ€๋…ธ๋“œ๋ผ๋Š” ๊ฐœ๋…์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ฉ”ํƒ€๋…ธ๋“œ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœํ•˜๋Š” ๊ทธ๋ž˜ํ”„ ์‹ ๊ฒฝ๋ง๊ณผ ๋Œ€์กฐ ํ•™์Šต ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์šฐ๋ฆฌ๋Š” ์ œ์•ˆํ•œ ๋ชจ๋ธ์„ ๋ฉ”ํƒ€ํŒจ์Šค๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ด์ข…๊ทธ๋ž˜ํ”„ ํ•™์Šต ๋ชจ๋ธ๊ณผ ๋…ธ๋“œ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋“ฑ์˜ ์‹คํ—˜ ์„ฑ๋Šฅ์œผ๋กœ ๋น„๊ตํ•ด๋ณด์•˜์„ ๋•Œ, ๋น„๋“ฑํ•˜๊ฑฐ๋‚˜ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์˜€์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.The goal of unsupervised graph representation learning is extracting useful node-wise or graph-wise vector representation that is aware of the intrinsic structures of the graph and its attributes. These days, designing methodology of unsupervised graph representation learning based on graph neural networks has growing attention due to their powerful representation ability. Many methods are focused on a homogeneous graph that is a network with a single type of node and a single type of edge. However, as many types of relationships exist in this world, graphs can also be classified into various types by structural and semantic properties. For this reason, to learn useful representations from graphs, the unsupervised learning framework must consider the characteristics of the input graph. In this dissertation, we focus on designing unsupervised learning models using graph neural networks for three graph structures that are widely available: homogeneous graphs, tree-like graphs, and heterogeneous graphs. First, we propose a symmetric graph convolutional autoencoder which produces a low-dimensional latent representation from a homogeneous graph. In contrast to the existing graph autoencoders with asymmetric decoder parts, the proposed autoencoder has a newly designed decoder which builds a completely symmetric autoencoder form. For the reconstruction of node features, the decoder is designed based on Laplacian sharpening as the counterpart of Laplacian smoothing of the encoder, which allows utilizing the graph structure in the whole processes of the proposed autoencoder architecture. In order to prevent the numerical instability of the network caused by the Laplacian sharpening introduction, we further propose a new numerically stable form of the Laplacian sharpening by incorporating the signed graphs. The experimental results of clustering, link prediction and visualization tasks on homogeneous graphs strongly support that the proposed model is stable and outperforms various state-of-the-art algorithms. Second, we analyze how unsupervised tasks can benefit from learned representations in hyperbolic space. To explore how well the hierarchical structure of unlabeled data can be represented in hyperbolic spaces, we design a novel hyperbolic message passing autoencoder whose overall auto-encoding is performed in hyperbolic space. The proposed model conducts auto-encoding the networks via fully utilizing hyperbolic geometry in message passing. Through extensive quantitative and qualitative analyses, we validate the properties and benefits of the unsupervised hyperbolic representations of tree-like graphs. Third, we propose the novel concept of metanode for message passing to learn both heterogeneous and homogeneous relationships between any two nodes without meta-paths and meta-graphs. Unlike conventional methods, metanodes do not require a predetermined step to manipulate the given relations between different types to enrich relational information. Going one step further, we propose a metanode-based message passing layer and a contrastive learning model using the proposed layer. In our experiments, we show the competitive performance of the proposed metanode-based message passing method on node clustering and node classification tasks, when compared to state-of-the-art methods for message passing networks for heterogeneous graphs.1 Introduction 1 2 Representation Learning on Graph-Structured Data 4 2.1 Basic Introduction 4 2.1.1 Notations 5 2.2 Traditional Approaches 5 2.2.1 Graph Statistic 5 2.2.2 Neighborhood Overlap 7 2.2.3 Graph Kernel 9 2.2.4 Spectral Approaches 10 2.3 Node Embeddings I: Factorization and Random Walks 15 2.3.1 Factorization-based Methods 15 2.3.2 Random Walk-based Methods 16 2.4 Node Embeddings II: Graph Neural Networks 17 2.4.1 Overview of Framework 17 2.4.2 Representative Models 18 2.5 Learning in Unsupervised Environments 21 2.5.1 Predictive Coding 21 2.5.2 Contrastive Coding 22 2.6 Applications 24 2.6.1 Classifications 24 2.6.2 Link Prediction 26 3 Autoencoder Architecture for Homogeneous Graphs 27 3.1 Overview 27 3.2 Preliminaries 30 3.2.1 Spectral Convolution on Graphs 30 3.2.2 Laplacian Smoothing 32 3.3 Methodology 33 3.3.1 Laplacian Sharpening 33 3.3.2 Numerically Stable Laplacian Sharpening 34 3.3.3 Subspace Clustering Cost for Image Clustering 37 3.3.4 Training 39 3.4 Experiments 40 3.4.1 Datasets 40 3.4.2 Experimental Settings 42 3.4.3 Comparing Methods 42 3.4.4 Node Clustering 43 3.4.5 Image Clustering 45 3.4.6 Ablation Studies 46 3.4.7 Link Prediction 47 3.4.8 Visualization 47 3.5 Summary 49 4 Autoencoder Architecture for Tree-like Graphs 50 4.1 Overview 50 4.2 Preliminaries 52 4.2.1 Hyperbolic Embeddings 52 4.2.2 Hyperbolic Geometry 53 4.3 Methodology 55 4.3.1 Geometry-Aware Message Passing 56 4.3.2 Nonlinear Activation 57 4.3.3 Loss Function 58 4.4 Experiments 58 4.4.1 Datasets 59 4.4.2 Compared Methods 61 4.4.3 Experimental Details 62 4.4.4 Node Clustering and Link Prediction 64 4.4.5 Image Clustering 66 4.4.6 Structure-Aware Unsupervised Embeddings 68 4.4.7 Hyperbolic Distance to Filter Training Samples 71 4.4.8 Ablation Studies 74 4.5 Further Discussions 75 4.5.1 Connection to Contrastive Learning 75 4.5.2 Failure Cases of Hyperbolic Embedding Spaces 75 4.6 Summary 77 5 Contrastive Learning for Heterogeneous Graphs 78 5.1 Overview 78 5.2 Preliminaries 82 5.2.1 Meta-path 82 5.2.2 Representation Learning on Heterogeneous Graphs 82 5.2.3 Contrastive methods for Heterogeneous Graphs 83 5.3 Methodology 84 5.3.1 Definitions 84 5.3.2 Metanode-based Message Passing Layer 86 5.3.3 Contrastive Learning Framework 88 5.4 Experiments 89 5.4.1 Experimental Details 90 5.4.2 Node Classification 94 5.4.3 Node Clustering 96 5.4.4 Visualization 96 5.4.5 Effectiveness of Metanodes 97 5.5 Summary 99 6 Conclusions 101๋ฐ•

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und รถffentlichen Sektors werden immer grรถรŸere Datenmengen verfรผgbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlรคsslich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren Zusammenhรคnge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfรผgbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden kรถnnen. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese kรถnnen als eine Erweiterung von CNNs von regelmรครŸigen Gittern auf allgemeine (unregelmรครŸige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten รผber Entitรคten in maschinenlesbaren Form. Obwohl groรŸe Anstrengungen unternommen werden, so viele Fakten wie mรถglich in diesen Graphen zu speichern, bleiben sie oft unvollstรคndig, d. h. es fehlen Fakten. Die manuelle รœberprรผfung und Erweiterung der Graphen wird aufgrund der groรŸen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstรผtzt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der Wissensgraphenvervollstรคndigung lรคsst sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen Entitรคten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitรคten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknรผpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollstรคndigung von Wissensgraphen vor. Fรผr das Entity Alignment zeigen wir, wie die Anzahl der benรถtigten Paare reduziert werden kann, wรคhrend die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erรถrtern auch die Leistungsfรคhigkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. Fรผr die Link Prediction demonstrieren wir, wie die Vorhersage fรผr unbekannte Entitรคten zur Trainingszeit verbessert werden kann, indem zusรคtzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfรผgbar sind. Gestรผtzt auf Ergebnisse einer groรŸ angelegten experimentellen Studie prรคsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. AuรŸerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugรคnglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. SchlieรŸlich schlagen wir eine neuartige Metrik fรผr die Bewertung von Ranking-Ergebnissen vor, wie sie fรผr beide Aufgaben verwendet wird. Sie ermรถglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in Fรคllen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen fรผr beide Aufgaben vorkommen

    Computational Labeling, Partitioning, and Balancing of Molecular Networks

    Get PDF
    Recent advances in high throughput techniques enable large-scale molecular quantification with high accuracy, including mRNAs, proteins and metabolites. Differential expression of these molecules in case and control samples provides a way to select phenotype-associated molecules with statistically significant changes. However, given the significance ranking list of molecular changes, how those molecules work together to drive phenotype formation is still unclear. In particular, the changes in molecular quantities are insufficient to interpret the changes in their functional behavior. My study is aimed at answering this question by integrating molecular network data to systematically model and estimate the changes of molecular functional behaviors. We build three computational models to label, partition, and balance molecular networks using modern machine learning techniques. (1) Due to the incompleteness of protein functional annotation, we develop AptRank, an adaptive PageRank model for protein function prediction on bilayer networks. By integrating Gene Ontology (GO) hierarchy with protein-protein interaction network, our AptRank outperforms four state-of-the-art methods in a comprehensive evaluation using benchmark datasets. (2) We next extend our AptRank into a network partitioning method, BioSweeper, to identify functional network modules in which molecules share similar functions and also densely connect to each other. Compared to traditional network partitioning methods using only network connections, BioSweeper, which integrates the GO hierarchy, can automatically identify functionally enriched network modules. (3) Finally, we conduct a differential interaction analysis, namely difFBA, on protein-protein interaction networks by simulating protein fluxes using flux balance analysis (FBA). We test difFBA using quantitative proteomic data from colon cancer, and demonstrate that difFBA offers more insights into functional changes in molecular behavior than does protein quantity changes alone. We conclude that our integrative network model increases the observational dimensions of complex biological systems, and enables us to more deeply understand the causal relationships between genotypes and phenotypes

    A Survey on Malware Detection with Graph Representation Learning

    Full text link
    Malware detection has become a major concern due to the increasing number and complexity of malware. Traditional detection methods based on signatures and heuristics are used for malware detection, but unfortunately, they suffer from poor generalization to unknown attacks and can be easily circumvented using obfuscation techniques. In recent years, Machine Learning (ML) and notably Deep Learning (DL) achieved impressive results in malware detection by learning useful representations from data and have become a solution preferred over traditional methods. More recently, the application of such techniques on graph-structured data has achieved state-of-the-art performance in various domains and demonstrates promising results in learning more robust representations from malware. Yet, no literature review focusing on graph-based deep learning for malware detection exists. In this survey, we provide an in-depth literature review to summarize and unify existing works under the common approaches and architectures. We notably demonstrate that Graph Neural Networks (GNNs) reach competitive results in learning robust embeddings from malware represented as expressive graph structures, leading to an efficient detection by downstream classifiers. This paper also reviews adversarial attacks that are utilized to fool graph-based detection methods. Challenges and future research directions are discussed at the end of the paper.Comment: Preprint, submitted to ACM Computing Surveys on March 2023. For any suggestions or improvements, please contact me directly by e-mai
    corecore