1,312 research outputs found

    Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator.

    Get PDF
    BackgroundPowdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator.ResultsA shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide.ConclusionsTaken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures

    Identification and expression analysis of Fragaria vesca MLO genes involved in interaction with powdery mildew (Podosphaera aphanis)

    Get PDF
    Strawberry powdery mildew, caused by Podosphaera aphanis is a major fungal disease that affects strawberry yield and quality. In the model plant species Arabidopsis and the crop plants barley, tomato and pea, the Mildew resistance locus O (MLO) proteins have been found to be required for powdery mildew susceptibility. The present study, based on the sequence of a wild plum (Prunus americana) MLO protein, identified 16 MLO genes within the genome of woodland strawberry, Fragaria vesca and examined their expression pattern in response to powdery mildew infection in three diploid strawberry cultivars. Phylogenetic analysis showed that the FvMLO genes can be classified into six clades. Four FvMLO genes were grouped into clade III, which comprises MLO genes from Arabidopsis, tomato and grapevine that mediate powdery mildew susceptibility. A RNA-seq analysis of two diploid strawberry cultivars, F. vesca ssp. vesca accession Hawaii 4 (HW) and F. vesca f. semperflorens line “Yellow Wonder 5AF7” (YW) at 1 d (1 DAI) and 8 d (8 DAI) after infection showed the expression of 12 out of the 16 FvMLO genes. The comparison of Fragments Per Kilobase of transcript per Million mapped reads (FPKM values) detected by RNA-seq and expression values of qRT-PCR for FvMLO genes showed substantial agreement. The FvMLO3 gene, which was grouped in clade III and orthologous to the Arabidopsis, tomato and grapevine genes, was highly expressed in YW compared to other FvMLO genes across varieties. The results showed that FvMLO genes can be used as potential candidates to engineer powdery mildew resistance in strawberry based on MLO suppression or genome editing

    Germin and germin-like proteins: evolution, structure, and function

    Get PDF
    Germin and germin-like proteins (GLPs) are encoded by a family of genes found in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a superfamily that has a conserved tertiary structure, though with limited similarity in primary sequence. The subgroups of GLPs have different enzyme functions that include the two hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This review summarizes the sequence and structural details of GLPs and also discusses their evolutionary progression, particularly their amplification in gene number during the evolution of the land plants. In terms of function, the GLPs are known to be differentially expressed during specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement with the protection of plants from environmental stress of various types has led to numerous plant breeding studies that have found links between GLPs and QTLs for disease and stress resistance. In addition the OxO enzyme has considerable commercial significance, based principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. Finally, this review provides information on the nutritional importance of these proteins in the human diet, as several members are known to be allergenic, a feature related to their thermal stability and evolutionary connection to the seed storage proteins, also members of the cupin superfamily

    Powdery mildew resistance genes in vines: an opportunity to achieve a more sustainable viticulture

    Get PDF
    Grapevine (Vitis vinifera) is one of the main fruit crops worldwide. In 2020, the total surface area planted with vines was estimated at 7.3 million hectares. Diverse pathogens affect grapevine yield, fruit, and wine quality of which powdery mildew is the most important disease prior to harvest. Its causal agent is the biotrophic fungus Erysiphe necator, which generates a decrease in cluster weight, delays fruit ripening, and reduces photosynthetic and transpiration rates. In addition, powdery mildew induces metabolic reprogramming in its host, affecting primary metabolism. Most commercial grapevine cultivars are highly susceptible to powdery mildew; consequently, large quantities of fungicide are applied during the productive season. However, pesticides are associated with health problems, negative environmental impacts, and high costs for farmers. In paralleled, consumers are demanding more sustainable practices during food production. Therefore, new grapevine cultivars with genetic resistance to powdery mildew are needed for sustainable viticulture, while maintaining yield, fruit, and wine quality. Two main gene families confer resistance to powdery mildew in the Vitaceae, Run (Resistance to Uncinula necator) and Ren (Resistance to Erysiphe necator). This article reviews the powdery mildew resistance genes and loci and their use in grapevine breeding program

    Powdery mildew responsive genes of resistant grapevine cultivar 'Regent'

    Get PDF
    The ascomycete Erysiphe necator causes powdery mildew disease of grapevine, a disastrous infection which is commonly defeated with multiple fungicide applications in viticulture. Breeding for natural resistance of quality grapes (Vitis vinifera) is thus a major aim of current efforts. The cultivar 'Regent' is resistant to powdery mildew due to an introgression from an American Vitis sp. resistance donor. To identify key regulatory elements in defense responses of 'Regent' we performed transcript analyses after challenging with E. necator inoculation in comparison with a susceptible grapevine. A set of genes selected from preliminary microarray hybridization results were investigated by RT-qPCR. The data indicate an important role of transcription factors MYB15, WRKY75, WRKY33, WRKY7, ethylene responsive transcription factors ERF2 and ERF5 as well as a CZF1/ZFAR transcripton factor in regulating the early defense when the fungus starts the interaction with its host by the formation of haustoria

    Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs that regulate gene expression by guiding target mRNA cleavage or translational inhibition. MiRNAs can have large-scale regulatory effects on development and stress response in plants.</p> <p>Results</p> <p>To test whether miRNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing we cloned the small RNA from wheat leaves infected by preponderant physiological strain <it>Erysiphe graminis f. sp. tritici </it>(<it>Egt</it>) or by heat stress treatment. A total of 153 miRNAs were identified, which belong to 51 known and 81 novel miRNA families. We found that 24 and 12 miRNAs were responsive to powdery mildew infection and heat stress, respectively. We further predicted that 149 target genes were potentially regulated by the novel wheat miRNA.</p> <p>Conclusions</p> <p>Our results indicated that diverse set of wheat miRNAs were responsive to powdery mildew infection and heat stress and could function in wheat responses to both biotic and abiotic stresses.</p

    Global transcriptome analysis and identification of differentially expressed genes after infection of Fragaria vesca with powdery mildew (Podosphaera aphanis)

    Get PDF
    Background: Podosphaera aphanis, the causal agent of strawberry powdery mildew causes significant economic loss worldwide. Methods: We used the diploid strawberry species Fragaria vesca as a model to study plant pathogen interactions. RNA-seq was employed to generate a transcriptome dataset from two accessions, F. vesca ssp. vesca Hawaii 4 (HW) and F. vesca f. semperflorens Yellow Wonder 5AF7 (YW) at 1 d (1 DAI) and 8 d (8 DAI) after infection. Results: Of the total reads identified about 999 million (92%) mapped to the F. vesca genome. These transcripts were derived from a total of 23,470 and 23,464 genes in HW and YW, respectively from the three time points (control, 1 and 8 DAI). Analysis identified 1,567, 1,846 and 1,145 up-regulated genes between control and 1 DAI, control and 8 DAI, and 1 and 8 DAI, respectively in HW. Similarly, 1,336, 1,619 and 968 genes were up-regulated in YW. Also 646, 1,098 and 624 down-regulated genes were identified in HW, while 571, 754 and 627 genes were down-regulated in YW between all three time points, respectively. Conclusion: Investigation of differentially expressed genes (log2 fold changes �5) between control and 1 DAI in both HW and YW identified a large number of genes related to secondary metabolism, signal transduction; transcriptional regulation and disease resistance were highly expressed. These included flavonoid 3´-monooxygenase, peroxidase 15, glucan endo-1,3-β-glucosidase 2, receptor-like kinases, transcription factors, germin-like proteins, F-box proteins, NB-ARC and NBS-LRR proteins. This is the first application of RNA-seq to any pathogen interaction in strawberr

    Comparative mapping of disease resistance genes in Lathyrus spp. using model legume genetic information

    Get PDF
    Lathyrus cicera L. (chickling pea) and L. sativus L. (grass pea) have great potential among grain legumes due to their adaptability to inauspicious environments, high protein content and resistance to serious diseases. Lathyrus spp. are considered potential sources of high quality and cheap protein. Nevertheless, due to its past underuse, further activities are required to exploit this potential and to capitalise on the present molecular biology advances on Lathyrus spp. breeding programmes.(...

    Emergent Ascomycetes in viticulture: an interdisciplinary overview

    Get PDF
    The reduction of pesticide usage is a current imperative and the implementation of sustainable viticulture is an urgent necessity. A potential solution, which is being increasingly adopted, is offered by the use of grapevine cultivars resistant to its main pathogenic threats. This, however, has contributed to changes in defense strategies resulting in the occurrence of secondary diseases, which were previously controlled. Concomitantly, the ongoing climate crisis is contributing to destabilizing the increasingly dynamic viticultural context. In this review, we explore the available knowledge on three Ascomycetes which are considered emergent and causal agents of powdery mildew, black rot and anthracnose. We also aim to provide a survey on methods for phenotyping disease symptoms in fields, greenhouse and lab conditions, and for disease control underlying the insurgence of pathogen resistance to fungicide. Thus, we discuss fungal genetic variability, highlighting the usage and development of molecular markers and barcoding, coupled with genome sequencing. Moreover, we extensively report on the current knowledge available on grapevine-ascomycete interactions, as well as the mechanisms developed by the host to counteract the attack. Indeed, to better understand these resistance mechanisms, it is relevant to identify pathogen effectors which are involved in the infection process and how grapevine resistance genes function and impact the downstream cascade. Dealing with such a wealth of information on both pathogens and the host, the horizon is now represented by multidisciplinary approaches, combining traditional and innovative methods of cultivation. This will support the translation from theory to practice, in an attempt to understand biology very deeply and manage the spread of these Ascomycetes
    corecore