4,519 research outputs found

    Conservation and co-option in developmental programmes: the importance of homology relationships

    Get PDF
    One of the surprising insights gained from research in evolutionary developmental biology (evo-devo) is that increasing diversity in body plans and morphology in organisms across animal phyla are not reflected in similarly dramatic changes at the level of gene composition of their genomes. For instance, simplicity at the tissue level of organization often contrasts with a high degree of genetic complexity. Also intriguing is the observation that the coding regions of several genes of invertebrates show high sequence similarity to those in humans. This lack of change (conservation) indicates that evolutionary novelties may arise more frequently through combinatorial processes, such as changes in gene regulation and the recruitment of novel genes into existing regulatory gene networks (co-option), and less often through adaptive evolutionary processes in the coding portions of a gene. As a consequence, it is of great interest to examine whether the widespread conservation of the genetic machinery implies the same developmental function in a last common ancestor, or whether homologous genes acquired new developmental roles in structures of independent phylogenetic origin. To distinguish between these two possibilities one must refer to current concepts of phylogeny reconstruction and carefully investigate homology relationships. Particularly problematic in terms of homology decisions is the use of gene expression patterns of a given structure. In the future, research on more organisms other than the typical model systems will be required since these can provide insights that are not easily obtained from comparisons among only a few distantly related model species

    Gene duplicability of core genes is highly consistent across all angiosperms

    Get PDF
    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes

    TGF-beta signaling proteins and the Protein Ontology

    Get PDF
    The Protein Ontology (PRO) is designed as a formal and principled Open Biomedical Ontologies (OBO) Foundry ontology for proteins. The components of PRO extend from a classification of proteins on the basis of evolutionary relationships at the homeomorphic level to the representation of the multiple protein forms of a gene, including those resulting from alternative splicing, cleavage and/or posttranslational modifications. Focusing specifically on the TGF-beta signaling proteins, we describe the building, curation, usage and dissemination of PRO. PRO provides a framework for the formal representation of protein classes and protein forms in the OBO Foundry. It is designed to enable data retrieval and integration and machine reasoning at the molecular level of proteins, thereby facilitating cross-species comparisons, pathway analysis, disease modeling and the generation of new hypotheses

    Squamata phylogenomics and molecular evolution of venom proteins in Toxicofera

    Get PDF
    How frequent is convergent evolution? This fundamental question of evolutionary biology is challenging to address as it requires mapping innovations on a phylogeny. Phylogeny reconstruction methods, however, aim at reconstructing the tree with the minimum number of such events. Squamata the order of scaled reptiles composed of lizards, snakes, and amphisbaenians offers a striking example of such a conundrum. The Toxicofera hypothesis states that all venomous squamates such as iguanas, anguimorphs, and snakes are a monophyletic group, and that venom evolved only once in their last common ancestor, therefore constituting the only synapomorphy legitimating this group. Morphological and molecular phylogenetics of squamates in particular those of mitochondrial genes, however, result in distinct phylogenies supporting multiple convergent evolution of venomousness also because not all Toxicofera are venomous. Venom is composed of different proteins that are recruited into the venom from their original function after gene duplication. Thus, homologs of venom proteins are also found in non-venomous taxa. Thereby, the composition of Toxicofera venom resembles those of various other taxa which evolved venomousness multiple times convergently. Here, I aim for studying the molecular evolution of two venom proteins by first establishing a phylogenetic framework for the squamates group with a phylogenomic approach that makes use of all protein families in the RefSeq database of the NCBI that are available for at least 15 squamates resulting in a dataset containing 768 protein families for 272 species. I then use the resulting phylogeny to study the molecular evolution of two venom proteins independent of their single-gene phylogenies. I perform selection models of codon sequence evolution to detect variations in selection pressure between venomous and non-venomous clades. Additionally, I expect to find positively selected sites to be fast-evolving surface proteins that are co-adapting. Even though mitochondrial and nuclear phylogenies diverge a lot the results reveal evidence for multiple convergent evolutions of venom in Colubroidea, Anguimorpha, and Iguania. Venom proteins experience positive selection in snakes and anguimorphs but not in iguanas. Among positively selected sites are fast-evolving surface residues that are co-adapting with other residues. I conclude selection pressure acting on venom proteins is stronger in all Toxicofera except for Iguania compared to other squamates. This difference is not necessarily a consequence of heritability but to some extent affected by ecological factors like differences in diet

    Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure

    Get PDF
    The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence

    Using Transcriptomics to Enable a Plethodontid Salamander (\u3cem\u3eBolitoglossa ramosi\u3c/em\u3e) for Limb Regeneration Research

    Get PDF
    Background: Tissue regeneration is widely distributed across the tree of life. Among vertebrates, salamanders possess an exceptional ability to regenerate amputated limbs and other complex structures. Thus far, molecular insights about limb regeneration have come from a relatively limited number of species from two closely related salamander families. To gain a broader perspective on the molecular basis of limb regeneration and enhance the molecular toolkit of an emerging plethodontid salamander (Bolitoglossa ramosi), we used RNA-Seq to generate a de novo reference transcriptome and identify differentially expressed genes during limb regeneration. Results: Using paired-end Illumina sequencing technology and Trinity assembly, a total of 433,809 transcripts were recovered and we obtained functional annotation for 142,926 non-redundant transcripts of the B. ramosi de novo reference transcriptome. Among the annotated transcripts, 602 genes were identified as differentially expressed during limb regeneration. This list was further processed to identify a core set of genes that exhibit conserved expression changes between B. ramosi and the Mexican axolotl (Ambystoma mexicanum), and presumably their common ancestor from approximately 180 million years ago. Conclusions: We identified genes from B. ramosi that are differentially expressed during limb regeneration, including multiple conserved protein-coding genes and possible putative species-specific genes. Comparative analyses reveal a subset of genes that show similar patterns of expression with ambystomatid species, which highlights the importance of developing comparative gene expression data for studies of limb regeneration among salamanders
    • …
    corecore