7 research outputs found

    Proving the Turing Universality of Oritatami Co-Transcriptional Folding (Full Text)

    Get PDF
    We study the oritatami model for molecular co-transcriptional folding. In oritatami systems, the transcript (the "molecule") folds as it is synthesized (transcribed), according to a local energy optimisation process, which is similar to how actual biomolecules such as RNA fold into complex shapes and functions as they are transcribed. We prove that there is an oritatami system embedding universal computation in the folding process itself. Our result relies on the development of a generic toolbox, which is easily reusable for future work to design complex functions in oritatami systems. We develop "low-level" tools that allow to easily spread apart the encoding of different "functions" in the transcript, even if they are required to be applied at the same geometrical location in the folding. We build upon these low-level tools, a programming framework with increasing levels of abstraction, from encoding of instructions into the transcript to logical analysis. This framework is similar to the hardware-to-algorithm levels of abstractions in standard algorithm theory. These various levels of abstractions allow to separate the proof of correctness of the global behavior of our system, from the proof of correctness of its implementation. Thanks to this framework, we were able to computerize the proof of correctness of its implementation and produce certificates, in the form of a relatively small number of proof trees, compact and easily readable and checkable by human, while encapsulating huge case enumerations. We believe this particular type of certificates can be generalized to other discrete dynamical systems, where proofs involve large case enumerations as well

    On Algorithmic Self-Assembly of Squares by Co-Transcriptional Folding

    Get PDF

    Oritatami Systems Assemble Shapes No Less Complex Than Tile Assembly Model (ATAM)

    Get PDF
    Different models have been proposed to understand natural phenomena at the molecular scale from a computational point of view. Oritatami systems are a model of molecular co-transcriptional folding: the transcript (the "molecule") folds as it is synthesized according to a local energy optimisation process, in a similar way to how actual biomolecules such as RNA fold into complex shapes and functions. We introduce a new model, called turedo, which is a self-avoiding Turing machine on the plane that evolves by marking visited positions and that can only move to unmarked positions. Any oritatami can be seen as a particular turedo. We show that any turedo with lookup radius 1 can conversely be simulated by an oritatami, using a universal bead type set. Our notion of simulation is strong enough to preserve the geometrical and dynamical features of these models up to a constant spatio-temporal rescaling (as in intrinsic simulation). As a consequence, turedo can be used as a readable oritatami "higher-level" programming language to build readily oritatami "smart robots", using our explicit simulation result as a compiler. As an application of our simulation result, we prove two new complexity results on the (infinite) limit configurations of oritatami systems (and radius-1 turedos), assembled from a finite seed configuration. First, we show that such limit configurations can embed any recursively enumerable set, and are thus exactly as complex as aTAM limit configurations. Second, we characterize the possible densities of occupied positions in such limit configurations: they are exactly the ??-computable numbers between 0 and 1. We also show that all such limit densities can be produced by one single oritatami system, just by changing the finite seed configuration. None of these results is implied by previous constructions of oritatami embedding tag systems or 1D cellular automata, which produce only computable limit configurations with constrained density

    Know When to Fold ’Em: Self-assembly of Shapes by Folding in Oritatami

    Get PDF
    International audienceAn oritatami system (OS) is a theoretical model of self-assembly via co-transcriptional folding. It consists of a growing chain of beads which can form bonds with each other as they are transcribed. During the transcription process, the δ most recently produced beads dynamically fold so as to maximize the number of bonds formed, self-assemblying into a shape incrementally. The parameter δ is called the delay and is related to the transcription rate in nature. This article initiates the study of shape self-assembly using oritatami. A shape is a connected set of points in the triangular lattice. We first show that oritatami systems differ fundamentally from tile-assembly systems by exhibiting a family of infinite shapes that can be tile-assembled but cannot be folded by any OS. As it is NP-hard in general to determine whether there is an OS that folds into (self-assembles) a given finite shape, we explore the folding of upscaled versions of finite shapes. We show that any shape can be folded from a constant size seed, at any scale n 3, by an OS with delay 1. We also show that any shape can be folded at the smaller scale 2 by an OS with unbounded delay. This leads us to investigate the influence of delay and to prove that, for all δ > 2, there are shapes that can be folded (at scale 1) with delay δ but not with delay δ < δ. These results serve as a foundation for the study of shape-building in this new model of self-assembly, and have the potential to provide better understanding of cotranscriptional folding in biology, as well as improved abilities of experimentalists to design artificial systems that self-assemble via this complex dynamical process.

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum
    corecore