41 research outputs found

    Transcranial Cerebellar Direct Current Stimulation (tDCS) Enhances Verb Generation but Not Verb Naming in Poststroke Aphasia

    Get PDF
    Although the role of the cerebellum in motor function is well recognized, its involvement in the lexical domain remains to be further elucidated. Indeed, it has not yet been clarified if the cerebellum is a language structure per se or if it contributes to language processing when other cognitive components (e.g., cognitive effort, working memory) are required by the language task. Neuromodulation studies on healthy participants have suggested that cerebellar transcranial direct current stimulation (tDCS) is a valuable tool to modulate cognitive functions. However, so far, only a single case study has investigated whether cerebellar stimulation enhances language recovery in aphasic individuals. In a randomized, crossover, double-blind design, we explored the effect of cerebellar tDCS coupled with language treatment for verb improvement in 12 aphasic individuals. Each participant received cerebellar tDCS (20 min, 2 mA) in four experimental conditions: (1) right cathodal and (2) sham stimulation during a verb generation task and (3) right cathodal and (4) sham stimulation during a verb naming task. Each experimental condition was run in five consecutive daily sessions over 4 weeks. At the end of treatment, a significant improvement was found after cathodal stimulation only in the verb generation task. No significant differences were present for verb naming among the two conditions. We hypothesize that cerebellar tDCS is a viable tool for recovery from aphasia but only when the language task, such as verb generation, also demands the activation of nonlinguistic strategies

    Cerebellar Cathodal Transcranial Direct Stimulation and Performance on a Verb Generation Task: A Replication Study

    Get PDF
    The role of the cerebellum in cognitive processing is increasingly recognized but still poorly understood. A recent study in this field applied cerebellar Transcranial Direct Current Stimulation (c-tDCS) to the right cerebellum to investigate the role of prefrontal-cerebellar loops in language aspects of cognition. Results showed that the improvement in participants' verbal response times on a verb generation task was facilitated immediately after cathodal c-tDCS, compared to anodal or sham c-tDCS. The primary aim of the present study is to replicate these findings and additionally to investigate possible longer term effects. A crossover within-subject design was used, comparing cathodal and sham c-tDCS. The experiment consisted of two visits with an interval of one week. Our results show no direct contribution of cathodal c-tDCS over the cerebellum to language task performance. However, one week later, the group receiving cathodal c-tDCS in the first visit show less improvement and increased variability in their verbal response times during the second visit, compared to the group receiving sham c-tDCS in the first visit. These findings suggest a potential negative effect of c-tDCS and warrant further investigation into long term effects of c-tDCS before undertaking clinical studies with poststroke patients with aphasia

    Diagnosing and Managing Post-Stroke Aphasia

    Get PDF
    Introduction: Aphasia is a debilitating language disorder and even mild forms of aphasia can negatively affect functional outcomes, mood, quality of life, social participation, and the ability to return to work. Language deficits after post-stroke aphasia are heterogeneous. Areas covered: The first part of this manuscript reviews the traditional syndrome-based classification approach as well as recent advances in aphasia classification that incorporate automatic speech recognition for aphasia classification. The second part of this manuscript reviews the behavioral approaches to aphasia treatment and recent advances such as noninvasive brain stimulation techniques and pharmacotherapy options to augment the effectiveness of behavioral therapy. Expert opinion: Aphasia diagnosis has largely evolved beyond the traditional approach of classifying patients into specific syndromes and instead focuses on individualized patient profiles. In the future, there is a great need for more large scale randomized, double-blind, placebo-controlled clinical trials of behavioral treatments, noninvasive brain stimulation, and medications to boost aphasia recovery

    Case report: the effects of cerebellar tDCS in bilingual post-stroke aphasia

    Get PDF
    Transcranial Direct Current Stimulation may be a useful neuromodulation tool for enhancing the effects of speech and language therapy in people with aphasia, but research so far has focused on monolinguals. We present the effects of 9 sessions of anodal cerebellar tDCS (ctDCS) coupled with language therapy in a bilingual patient with chronic post-stroke aphasia caused by left frontal ischemia, in a double-blind, sham-controlled within-subject design. Language therapy was provided in his second language (L2). Both sham and anodal treatment improved trained picture naming in the treated language (L2), while anodal ctDCS in addition improved picture naming of untrained items in L2 and his first language, L1. Picture description improved in L2 and L1 after anodal ctDCS, but not after sham

    Bilateral Transcranial Direct Current Stimulation Language Treatment Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data from Aphasia

    Get PDF
    Several studies have already shown that transcranial direct current stimulation (tDCS) is a useful tool for enhancing recovery in aphasia. However, no reports to date have investigated functional connectivity changes on cortical activity because of tDCS language treatment. Here, nine aphasic persons with articulatory disorders underwent an intensive language therapy in two different conditions: bilateral anodic stimulation over the left Broca's area and cathodic contralesional stimulation over the right homologue of Broca's area and a sham condition. The language treatment lasted 3 weeks (Monday to Friday, 15 sessions). In all patients, language measures were collected before (T0) and at the end of treatment (T15). Before and after each treatment condition (real vs. sham), each participant underwent a resting-state fMRI study. Results showed that, after real stimulation, patients exhibited the greatest recovery not only in terms of better accuracy in articulating the treated stimuli but also for untreated items on different tasks of the language test. Moreover, although after the sham condition connectivity changes were confined to the right brain hemisphere, real stimulation yielded to stronger functional connectivity increase in the left hemisphere. In conclusion, our data provide converging evidence from behavioral and functional imaging data that bilateral tDCS determines functional connectivity changes within the lesioned hemisphere, enhancing the language recovery process in stroke patients

    The Effect of Focal Damage to the Right Medial Posterior Cerebellum on Word and Sentence Comprehension and Production

    Get PDF
    Functional imaging studies of neurologically intact adults have demonstrated that the right posterior cerebellum is activated during verb generation, semantic processing, sentence processing, and verbal fluency. Studies of patients with cerebellar damage converge to show that the cerebellum supports sentence processing and verbal fluency. However, to date there are no patient studies that investigated the specific importance of the right posterior cerebellum in language processing, because: (i) case studies presented patients with lesions affecting the anterior cerebellum (with or without damage to the posterior cerebellum), and (ii) group studies combined patients with lesions to different cerebellar regions, without specifically reporting the effects of right posterior cerebellar damage. Here we investigated whether damage to the right posterior cerebellum is critical for sentence processing and verbal fluency in four patients with focal stroke damage to different parts of the right posterior cerebellum (all involving Crus II, and lobules VII and VIII). We examined detailed lesion location by going beyond common anatomical definitions of cerebellar anatomy (i.e., according to lobules or vascular territory), and employed a recently proposed functional parcellation of the cerebellum. All four patients experienced language difficulties that persisted for at least a month after stroke but three performed in the normal range within a year. In contrast, one patient with more damage to lobule IX than the other patients had profound long-lasting impairments in the comprehension and repetition of sentences, and the production of spoken sentences during picture description. Spoken and written word comprehension and visual recognition memory were also impaired, however, verbal fluency was within the normal range, together with object naming, visual perception and verbal shortterm memory. This is the first study to show that focal damage to the right posterior cerebellum leads to language difficulties after stroke; and that processing impairments persisted in the case with most damage to lobule IX. We discuss these results in relation to current theories of cerebellar contribution to language processing. Overall, our study highlights the need for longitudinal studies of language function in patients with focal damage to different cerebellar regions, with functional imaging to understand the mechanisms that support recovery

    Neuroplasticity and aphasia treatments: new approaches for an old problem

    Get PDF
    Given the profound impact of language impairment after stroke (aphasia), neuroplasticity research is garnering considerable attention as means for eventually improving aphasia treatments and how they are delivered. Functional and structural neuroimaging studies indicate that aphasia treatments can recruit both residual and new neural mechanisms to improve language function and that neuroimaging modalities may hold promise in predicting treatment outcome. In relatively small clinical trials, both non-invasive brain stimulation and behavioural manipulations targeting activation or suppression of specific cortices can improve aphasia treatment outcomes. Recent language interventions that employ principles consistent with inducing neuroplasticity also are showing improved performance for both trained and novel items and contexts. While knowledge is rapidly accumulating, larger trials emphasising how to select optimal paradigms for individualised aphasia treatment are needed. Finally, a model of how to incorporate the growing knowledge into clinical practice could help to focus future research

    Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes

    Get PDF
    Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function

    Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes

    Get PDF
    Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function161CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP465686/2014-1Não tem2014/50909-8; 13/10187–0; 14/10134–7The authors thank the Ministry of Education (MEC), FAPESP - São Paulo Research Foundation, Universidade Estadual de Londrina, Universidade Federal do Rio Grande do Norte and Universidade Federal do ABC for its support. Postdoctoral scholarships to DGSM from the Coordination for the Improvement of Higher Education Personnel (CAPES). Source(s) of financial support: This study was partially funded by grants to MB from NIH (NIH-NIMH 1R01MH111896, NIH-NINDS 1R01NS101362, NIH-NCI U54CA137788/U54CA132378, R03 NS054783) and New York State Department of Health (NYS DOH, DOH01-C31291GG), CEPID/BRAINN - The Brazilian Institute of Neuroscience and Neurotechnology (Process: 13/07559–3) to LML, Brazilian National Research Council (CNPq, Grant # 465686/2014-1) and the São Paulo Research Foundation (Grant # 2014/50909-8) to MSC, and Postdoctoral scholarships to AHO from FAPESP - Sao Paulo Research Foundation (Process: 13/10187–0 and 14/10134–7
    corecore