4 research outputs found

    Efficient Support for Application-Specific Video Adaptation

    Get PDF
    As video applications become more diverse, video must be adapted in different ways to meet the requirements of different applications when there are insufficient resources. In this dissertation, we address two sorts of requirements that cannot be addressed by existing video adaptation technologies: (i) accommodating large variations in resolution and (ii) collecting video effectively in a multi-hop sensor network. In addition, we also address requirements for implementing video adaptation in a sensor network. Accommodating large variation in resolution is required by the existence of display devices with widely disparate screen sizes. Existing resolution adaptation technologies usually aim at adapting video between two resolutions. We examine the limitations of these technologies that prevent them from supporting a large number of resolutions efficiently. We propose several hybrid schemes and study their performance. Among these hybrid schemes, Bonneville, a framework that combines multiple encodings with limited scalability, can make good trade-offs when organizing compressed video to support a wide range of resolutions. Video collection in a sensor network requires adapting video in a multi-hop storeand- forward network and with multiple video sources. This task cannot be supported effectively by existing adaptation technologies, which are designed for real-time streaming applications from a single source over IP-style end-to-end connections. We propose to adapt video in the network instead of at the network edge. We also propose a framework, Steens, to compose adaptation mechanisms on multiple nodes. We design two signaling protocols in Steens to coordinate multiple nodes. Our simulations show that in-network adaptation can use buffer space on intermediate nodes for adaptation and achieve better video quality than conventional network-edge adaptation. Our simulations also show that explicit collaboration among multiple nodes through signaling can improve video quality, waste less bandwidth, and maintain bandwidth-sharing fairness. The implementation of video adaptation in a sensor network requires system support for programmability, retaskability, and high performance. We propose Cascades, a component-based framework, to provide the required support. A prototype implementation of Steens in this framework shows that the performance overhead is less than 5% compared to a hard-coded C implementation

    Adaptive video delivery using semantics

    Get PDF
    The diffusion of network appliances such as cellular phones, personal digital assistants and hand-held computers has created the need to personalize the way media content is delivered to the end user. Moreover, recent devices, such as digital radio receivers with graphics displays, and new applications, such as intelligent visual surveillance, require novel forms of video analysis for content adaptation and summarization. To cope with these challenges, we propose an automatic method for the extraction of semantics from video, and we present a framework that exploits these semantics in order to provide adaptive video delivery. First, an algorithm that relies on motion information to extract multiple semantic video objects is proposed. The algorithm operates in two stages. In the first stage, a statistical change detector produces the segmentation of moving objects from the background. This process is robust with regard to camera noise and does not need manual tuning along a sequence or for different sequences. In the second stage, feedbacks between an object partition and a region partition are used to track individual objects along the frames. These interactions allow us to cope with multiple, deformable objects, occlusions, splitting, appearance and disappearance of objects, and complex motion. Subsequently, semantics are used to prioritize visual data in order to improve the performance of adaptive video delivery. The idea behind this approach is to organize the content so that a particular network or device does not inhibit the main content message. Specifically, we propose two new video adaptation strategies. The first strategy combines semantic analysis with a traditional frame-based video encoder. Background simplifications resulting from this approach do not penalize overall quality at low bitrates. The second strategy uses metadata to efficiently encode the main content message. The metadata-based representation of object's shape and motion suffices to convey the meaning and action of a scene when the objects are familiar. The impact of different video adaptation strategies is then quantified with subjective experiments. We ask a panel of human observers to rate the quality of adapted video sequences on a normalized scale. From these results, we further derive an objective quality metric, the semantic peak signal-to-noise ratio (SPSNR), that accounts for different image areas and for their relevance to the observer in order to reflect the focus of attention of the human visual system. At last, we determine the adaptation strategy that provides maximum value for the end user by maximizing the SPSNR for given client resources at the time of delivery. By combining semantic video analysis and adaptive delivery, the solution presented in this dissertation permits the distribution of video in complex media environments and supports a large variety of content-based applications

    Personalizing quality aspects for video communication in constrained heterogeneous environments

    Get PDF
    The world of multimedia communication is drastically evolving since a few years. Advanced compression formats for audiovisual information arise, new types of wired and wireless networks are developed, and a broad range of different types of devices capable of multimedia communication appear on the market. The era where multimedia applications available on the Internet were the exclusive domain of PC users has passed. The next generation multimedia applications will be characterized by heterogeneity: differences in terms of the networks, devices and user expectations. This heterogeneity causes some new challenges: transparent consumption of multimedia content is needed in order to be able to reach a broad audience. Recently, two important technologies have appeared that can assist in realizing such transparent Universal Multimedia Access. The first technology consists of new scalable or layered content representation schemes. Such schemes are needed in order to make it possible that a multimedia stream can be consumed by devices with different capabilities and transmitted over network connections with different characteristics. The second technology does not focus on the content representation itself, but rather on linking information about the content, so-called metadata, to the content itself. One of the possible uses of metadata is in the automatic selection and adaptation of multimedia presentations. This is one of the main goals of the MPEG-21 Multimedia Framework. Within the MPEG-21 standard, two formats were developed that can be used for bitstream descriptions. Such descriptions can act as an intermediate layer between a scalable bitstream and the adaptation process. This way, format-independent bitstream adaptation engines can be built. Furthermore, it is straightforward to add metadata information to the bitstream description, and use this information later on during the adaptation process. Because of the efforts spent on bitstream descriptions during our research, a lot of attention is devoted to this topic in this thesis. We describe both frameworks for bitstream descriptions that were standardized by MPEG. Furthermore, we focus on our own contributions in this domain: we developed a number of bitstream schemas and transformation examples for different types of multimedia content. The most important objective of this thesis is to describe a content negotiation process that uses scalable bitstreams in a generic way. In order to be able to express such an application, we felt the need for a better understanding of the data structures, in particular scalable bitstreams, on which this content negotiation process operates. Therefore, this thesis introduces a formal model we developed capable of describing the fundamental concepts of scalable bitstreams and their relations. Apart from the definition of the theoretical model itself, we demonstrate its correctness by applying it to a number of existing formats for scalable bitstreams. Furthermore, we attempt to formulate a content negotiation process as a constrained optimization problem, by means of the notations defined in the abstract model. In certain scenarios, the representation of a content negotiation process as a constrained optimization problem does not sufficiently reflect reality, especially when scalable bitstreams with multiple quality dimensions are involved. In such case, several versions of the same original bitstream can meet all constraints imposed by the system. Sometimes one version clearly offers a better quality towards the end user than another one, but in some cases, it is not possible to objectively compare two versions without additional information. In such a situation, a trade-off will have to be made between the different quality aspects. We use Pareto's theory of multi-criteria optimization for formally describing the characteristics of a content negotiation process for scalable bitstreams with multiple quality dimensions. This way, we can modify our definition of a content negotiation process into a multi-criteria optimization problem. One of the most important problems with multi-criteria optimization problems is that multiple candidate optimal solutions may exist. Additional information, e.g. user preferences, is needed if a single optimal solution has to be selected. Such multi-criteria optimization problems are not new. Unfortunately, existing solutions for selecting one optimal version are not suitable in a content negotiation scenario, because they expect detailed understanding of the problem from the decision maker, in our case the end user. In this thesis, we propose a scenario in which a so-called content negotiation agent would give some sample video sequences to the end user, asking him to select which sequence he liked the most. This information would be used for training the agent: a model would be built representing the preferences of the end user, and this model can be used later on for selecting one solution from a set of candidate optimal solutions. Based on a literature study, we propose two candidate algorithms in this thesis that can be used in such a content negotiation agent. It is possible to use these algorithms for constructing a model of the user's preferences by means of a number of examples, and to use this model when selecting an optimal version. The first algorithm considers the quality of a video sequence as a weighted sum of a number of independent quality aspects, and derives a system of linear inequalities from the example decisions. The second algorithm, called 1ARC, is actually a nearest-neighbor approach, where predictions are made based on the similarity with the example decisions entered by the user. This thesis analyzes the strengths and weaknesses of both algorithms from multiple points of view. The computational complexity of both algorithms is discussed, possible parameters that can influence the reliability of the algorithm, and the reliability itself. For measuring this kind of performance, we set up a test in which human subjects are asked to make a number of pairwise decisions between two versions of the same original video sequence. The reliability of the two algorithms we proposed is tested by selecting a part of these decisions for training a model, and by observing if this model is able to predict other decisions entered by the same user. We not only compare both algorithms, but we also observe the result of modifying several parameters on both algorithms. Ultimately, we conclude that the 1ARC algorithm has an acceptable performance, certainly if the training set is sufficiently large. The reliability is better than what would be theoretically achievable by any other algorithm that selects one optimal version from a set of candidate versions, but does not try to capture the user's preferences. Still, the results that we achieve are not as good as what we initially hoped. One possible cause may be the fact that the algorithms we proposed currently do not take sequence characteristics (e.g. the amount of motion) into account. Other improvements may be possible by means of a more accurate description of the quality aspects that we take into account, in particular the spatial resolution, the amount of distortion and the smoothness of a video sequence. Despite the limitations of the algorithms we proposed, in their performance as well as in their application area, we think that this thesis contains an initial and original contribution to the emerging objective of realizing Quality of Experience in multimedia applications

    Sistema de conversão de vídeo

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesEsta dissertação é composta por uma descrição dos conceitos base dos formatos de vídeo, uma explicação detalhada da norma MPEG-4 AVC/H.264, um estudo com algum detalhe do protocolo de transporte RTP e uma exposição rigorosa do Conversor de Vídeo implementado e respectivas conclusões. O conversor de vídeo descrito nesta dissertação é um contributo para a implementação de um sistema de transcodificação de MPEG-4 AVC/H.264 escalável em MPEG-4 AVC/H.264 não escalável. Trata-se, contudo, de um sistema que selecciona os streams correspondentes a determinadas resoluções e qualidades de vídeo e os disponibiliza ao utilizador. Um exemplo típico é a difusão de televisão digital em formato H.264 escalável com duas camadas, a base em SD e a melhorada em HD. A técnica de compressão de vídeo utilizada no presente trabalho foi a norma H.264 dado que possui uma elevada taxa de compressão. ABSTRACT: This dissertation is composed of a description of the video basic concepts, a detailed explanation of the standard MPEG-4 AVC/H.264, a detailed study for the transport protocol RTP and the video converter. Finally, it reports some conclusions that we have drawn. The video converter proposed in this thesis is a contribution to the implementation of a transcoding system from scalable MPEG-4 AVC/H.264 into nonscalable MPEG-4 AVC/H.264. This converter selects streams with different qualities and spatial resolutions and provides them to the user. A typical example is in the digital television broadcasting environment where scalable H.264 with two layers are broadcasted using the base in SD and the enhancement in HD resolutions. The video technique applied in the present work was the H.264 standard, because it provides a high video compression
    corecore